We demonstrate here a novel method for the design of liquid crystals (LCs) via the cyclization of mesogens by flexible chains. For two azobenzene-4,4′-dicarboxylate derivatives, the cyclic dimer, cyclic bis(tetraethylene glycol azobenzene-4,4′-dicarboxylate) (CBTAD), shows LC properties with smectic A phase, while its linear counterpart, bis(2-(2′-hydroxyethyloxy)ethyl azobenzene-4,4′-dicarboxylate (BHAD), has no LC phase. The difference is ascribed to the shackling effect from the cyclic topology, which leads to the much smaller entropy change during phase transitions and increases the isotropic temperature greatly for cyclics. In addition, the trans-to-cis isomerization of azobenzene groups under UV-light is also limited in CBTAD. With the reversible isomerization of azobenzene groups, CBTAD showed interesting isothermal phase transition behaviors, where the LC phase disappeared upon photoirradiation of 365 nm UV-light, and recovered when the UV-light was off. Combined with the smectic LC nature, a novel UV-light tuned visible light regulator was designed, by simply placing CBTAD in two glass plates. The scattered phase of smectic LC was utilized as the “OFF” state for light passage, while the UV-light induced isotropic phase was utilized as the “ON” state. The shackling effect outlined here should be applicable for the design of cyclic LC oligomers/polymers with special properties.
Understanding the molecular determinants of the relative propensities of proteins to aggregate in a cellular environment is a central issue for treating protein‐aggregation diseases and developing peptide‐based therapeutics. Despite the expectation that protein aggregation can largely be attributed to direct protein–protein interactions, a crucial role the surrounding water in determining the aggregation propensity of proteins both in vitro and in vivo was identified. The overall protein hydrophobicity, defined solely by the hydration free energy of a protein in its monomeric state sampling its equilibrium structures, was shown to be the predominant determinant of protein aggregation propensity in aqueous solution. Striking discrimination of positively and negatively charged residues by the surrounding water was also found. This effect depends on the protein net charge and plays a crucial role in regulating the solubility of the protein. These results pave the way for the design of aggregation‐resistant proteins as biotherapeutics. 相似文献
The molecular mechanisms for the photoconversion of fluorescent proteins remain elusive owing to the challenges of monitoring chromophore structural dynamics during the light-induced processes. We implemented time-resolved electronic and stimulated Raman spectroscopies to reveal two hidden species of an engineered ancestral GFP-like protein LEA, involving semi-trapped protonated and trapped deprotonated chromophores en route to photoconversion in pH 7.9 buffer. A new dual-illumination approach was examined, using 400 and 505 nm light simultaneously to achieve faster conversion and higher color contrast. Substitution of UV irradiation with visible light benefits bioimaging, while the spectral benchmark of a trapped chromophore with characteristic ring twisting and bridge-H bending motions enables rational design of functional proteins. With the improved H-bonding network and structural motions, the photoexcited chromophore could increase the photoswitching-aided photoconversion while reducing trapped species. 相似文献
Journal of Chemical Crystallography - Four different rare-earth oxyapatites of Ca2RE8(SiO4)6O2 (RE?=?Pr, Tb, Ho, Tm) were synthesized using a solution-based method followed by drying,... 相似文献
Studying the complex quantum dynamics of interacting many-body systems is one of the most challenging areas in modern physics. Here, we use machine learning (ML) models to identify the symmetrized base states of interacting Rydberg atoms of various atom numbers (up to six) and geometric configurations. To obtain the data set for training the ML classifiers, we generate Rydberg excitation probability profiles that simulate experimental data by utilizing Lindblad equations that incorporate laser intensities and phase noise. Then, we classify the data sets using support vector machines (SVMs) and random forest classifiers (RFCs). With these ML models, we achieve high accuracy of up to 100% for data sets containing only a few hundred samples, especially for the closed atom configurations such as the pentagonal (five atoms) and hexagonal (six atoms) systems. The results demonstrate that computationally cost-effective ML models can be used in the identification of Rydberg atom configurations. 相似文献
The effect of temperature and Ge coverage on the evolution of self-assembled Ge/Si islands grown by ion beam sputtering deposition is studied. Atomic force microscopy and Raman spectroscopy are used to analyze the island morphology and the intermixing between Si and Ge. The experiments are presented in two aspects. First, when the temperature is increased, intermixing is promoted, resulting in the reappearance of low aspect ratio islands. Second, a different evolution pathway is observed, in which short islands initially don’t grow along the constant ratio of 11:1 (diameter:height) and the islands always grow faster in vertical direction. In summary, the interdiffusion, surface diffusion, and amount of Ge determines the evolution of Ge/Si islands. 相似文献