首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3839篇
  免费   182篇
  国内免费   12篇
化学   2809篇
晶体学   8篇
力学   141篇
数学   480篇
物理学   595篇
  2023年   38篇
  2022年   65篇
  2021年   81篇
  2020年   87篇
  2019年   85篇
  2018年   72篇
  2017年   58篇
  2016年   126篇
  2015年   110篇
  2014年   144篇
  2013年   178篇
  2012年   301篇
  2011年   342篇
  2010年   151篇
  2009年   146篇
  2008年   283篇
  2007年   246篇
  2006年   242篇
  2005年   236篇
  2004年   198篇
  2003年   117篇
  2002年   134篇
  2001年   37篇
  2000年   28篇
  1999年   31篇
  1998年   15篇
  1997年   28篇
  1996年   32篇
  1995年   16篇
  1994年   24篇
  1993年   23篇
  1992年   26篇
  1990年   18篇
  1989年   13篇
  1988年   12篇
  1987年   8篇
  1986年   11篇
  1985年   23篇
  1984年   21篇
  1983年   15篇
  1982年   18篇
  1981年   22篇
  1980年   14篇
  1979年   18篇
  1978年   18篇
  1977年   19篇
  1976年   14篇
  1975年   16篇
  1974年   16篇
  1973年   8篇
排序方式: 共有4033条查询结果,搜索用时 390 毫秒
71.
Surface modification studies of non-vulcanized BR elastomers (butadiene rubber) by low-pressure air plasma treatment and the effect on ageing and adhesion performances are presented in this paper. In particular, the influence of discharge power and distance from the glow discharge, and impact of antioxidant molecules in the BR formulation were examined. To characterize the changes to the BR surface, XPS spectroscopy, contact angle measurements, AFM nanoindentation experiments and tack measurements were utilized. Oxidation and crosslinking were the main mechanisms observed on the polymer chains regardless of the plasma conditions used. Beyond a certain threshold of plasma energy (in our case, discharge power of ~60 W and exposure time of ~30 s), a steady state was reached irrespective of the distance from the glow discharge. The presence of antioxidant molecules considerably reduced crosslinking phenomena while maintaining oxidation processes on polymer chains and increasing the nitrogen content in the near surface region. The mechanisms responsible for these differences have been identified. Interestingly, the COOH/C=O ratio changed according to the balance between oxidation and crosslinking. The hydrophobic recovery rate was mainly driven by temperature-dependent dynamics and varied according to the degree of crosslinking in the surface region. It was found to be lower in air atmosphere in the presence of antioxidant molecules. Finally, the presence of antioxidant molecules in the BR formulation allowed the adhesion performances after plasma exposure to significantly increase.  相似文献   
72.
Electrons are transferred over long distances along chains of FeS clusters in hydrogenases, mitochondrial complexes, and many other respiratory enzymes. It is usually presumed that electron transfer is fast in these systems, despite the fact that there has been no direct measurement of rates of FeS-to-FeS electron transfer in any respiratory enzyme. In this context, we propose and apply to NiFe hydrogenase an original strategy that consists of quantitatively interpreting the variations of steady-state activity that result from changing the nature of the FeS clusters which connect the active site to the redox partner, and/or the nature of the redox partner. Rates of intra- and intermolecular electron transfer are deduced from such large data sets. The mutation-induced variations of electron transfer rates cannot be explained by changes in intercenter distances and reduction potentials. This establishes that FeS-to-FeS rate constants are extremely sensitive to the nature and coordination of the centers.  相似文献   
73.
A heteroditopic ligand H(2)-L consisting of a dihydroxybenzene (catechol)-unit linked via an amide bond to a pyridyl-unit and its methyl-protected precursor Me(2)-L were synthesized, characterized, and their photophysical properties investigated. The three accessible protonation states of the ligand, H(3)-L(+), H(2)-L, and H-L(-), showed distinct (1)H NMR, absorption and emission spectroscopic characteristics that allow pH-sensing. The spectroscopic signatures obtained act as a guide to understand the signaling mechanism of the luminescent pH and molybdate sensor [Re(bpy)(CO)(3)(H(2)-L)](+). It was found that upon deprotonation of the 2-hydroxy group of H(2)-L, a ligand-based absorption band emerges that overlaps with the Re(dπ)→bpy metal-to-ligand charge transfer (MLCT) band of the sensor, reducing the quantum yield for emission on excitation in the 370 nm region. In addition, deprotonation of the catechol-unit leads to quenching of the emission from the Re(dπ)→bpy (3)MLCT state, consistent with photoinduced electron transfer from the electron-rich, deprotonated catecholate to the Re-based luminophore. Finally, reaction of 2 equiv of [Re(bpy)(CO)(3)(H(2)-L)](+) with molybdate was shown to give the zwitterionic Mo(VI) complex [MoO(2){Re(CO)(3)(bpy)(L)}(2)], as confirmed by electrospray ionization (ESI) mass spectrometry and X-ray crystallography. The crystal structure determination revealed that two fully deprotonated sensor molecules are bound via their oxygen-donors to a cis-dioxo-MoO(2) center.  相似文献   
74.
Mass spectrometry imaging of lipids using MALDI–TOF/TOF mass spectrometers is of growing interest for chemical mapping of organic compounds at the surface of tissue sections. Many efforts have been devoted to the best matrix choice and deposition technique. Nevertheless, the identification of lipid species desorbed from tissue sections remains problematic. It is now well-known that protonated, sodium- and potassium-cationized lipids are detected from biological samples, thus complicating the data analysis. A new sample preparation method is proposed, involving the use of lithium salts in the matrix solution in order to simplify the mass spectra with only lithium-cationized molecules instead of a mixture of various cationized species. Five different lithium salts were tested. Among them, lithium trifluoroacetate and lithium iodide merged the different lipid adducts into one single lithium-cationized species. An optimized sample preparation protocol demonstrated that the lithium trifluoroacetate salt slightly increased desorption of phosphatidylcholines. Mass spectrometry images acquired on rat brain tissue sections by adding lithium trifluoroacetate showed the best results in terms of image contrast. Moreover, more structurally relevant fragments were generated by tandem mass spectrometry when analyzing lithium-cationized species.  相似文献   
75.
The determination of seven arsenic species in seafood was performed using ion exchange chromatography on an IonPac AS7 column with inductively coupled plasma mass spectrometry detection after microwave assisted extraction. The effect of five parameters on arsenic extraction recoveries was evaluated in certified reference materials. The recoveries of total arsenic and of arsenic species with the two best extraction media (100% H2O and 80% aqueous MeOH) were generally similar in the five seafood certified reference materials considered. However, because MeOH co-elutes with arsenite, which would result in a positively biased arsenite concentration, the 100% H2O extraction conditions were selected for validation of the method. Figures of merit (linearity, LOQs (0.019-0.075 mg As kg−1), specificity, trueness (with recoveries between 82% (As(III)) and 104% (As(V) based on spikes or certified concentrations), repeatability (3-14%), and intermediate precision reproducibility (9-16%) of the proposed method were satisfactory for the determination of arsenite, monomethylarsonic acid, dimethylarsinic acid, arsenate, arsenobetaine and arsenocholine in fish and shellfish. The performance criteria for trimethylarsine oxide, however, were less satisfactory. The method was then applied to 65 different seafood samples. Arsenobetaine was the main species in all samples. The percentage of inorganic arsenic varied between 0.4-15.8% in shellfish and 0.5-1.9% at the utmost in fish. The main advantage of this method that uses only H2O as an extractant and nitric acid as gradient eluent is its great compatibility with the long-term stability of both IEC separation and ICP-MS detection.  相似文献   
76.
A series of UDP‐galactitols were designed as analogues of high‐energy intermediates of the UDP‐galactopyranose mutase (UGM) catalyzed furanose/pyranose interconversion, an essential step of Mycobacterium tuberculosis cell wall biosynthesis. The final compounds structurally share the UDP and the galactitol substructures that were connected by four distinct electrophilic connections (epoxide, lactone and Michael acceptors). All molecules were synthesized from a common perbenzylated acyclic galactose precursor that was derivatized by alkenylation, alkynylation and cyclopropanation. The inhibition study against UGM could clearly show that slight changes in the relative orientation of the UDP and the galactitol moieties resulted in dramatic variations of binding properties. Compared to known inhibitors, the epoxide derivative displayed a very tight, reversible, inhibition profile. Moreover, a time‐dependent inactivation study showed that none of these electrophilic structures could react with UGM, or its FAD cofactor, the catalytic nucleophile of this still intriguing reaction.  相似文献   
77.
The first visible‐light‐mediated synthesis of trifluoromethylselenolated arenes under metal‐free conditions is reported. The use of an organic photocatalyst enables the trifluoromethylselenolation of arene diazonium salts using the shelf‐stable reagent trifluoromethyl tolueneselenosulfonate at room temperature. The reaction does not require the presence of any additives and shows high functional‐group tolerance, covering a very broad range of starting materials. Mechanistic investigations, including EPR spectroscopy, luminescence investigations, and cyclic voltammetry allow rationalization of the reaction mechanism.  相似文献   
78.
79.
80.
The ion-molecule reactivity of the products formed in the association reactions of HCNH+ with C2H2 (C3H4N+) and C2H4 (C3H6N+) has been investigated to provide information on the structures of the adducts thus formed. The C3H4N+ and C3H6N+ adducts were formed in the reaction flow tube of a flowing afterglow sourced-selected ion flow tube (FA-SIFT) and their reactivity with a neutral molecular "probe" examined. The reactivity of possible known structural isomers for the C3H4N+ and C3H6N+ ions was investigated in both the FA-SIFT and an ion cyclotron resonance spectrometer (ICR). Ab initio investigations of the potential energy surfaces for both structures at the G2(MP2) level have also been performed and structures corresponding to local minima on both surfaces have been identified and evaluated. The results of these experimental and theoretical studies show that at room temperature, the C3H4N+ adduct ion contains two isomers; a less reactive one that is likely to be a four-membered cyclic covalent isomer (approximately 70%) and a faster reacting component that is probably an electrostatic complex (approximately 30%). The C3H6N+ adduct ion formed from HCNH+ + C2H4 at room temperature is a single isomer that is likely to be the four-membered covalently bound cyclic CH2CH2CHNH+ species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号