首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1104篇
  免费   33篇
  国内免费   5篇
化学   732篇
晶体学   4篇
力学   21篇
数学   231篇
物理学   154篇
  2023年   11篇
  2022年   20篇
  2021年   31篇
  2020年   13篇
  2019年   37篇
  2018年   24篇
  2017年   24篇
  2016年   38篇
  2015年   44篇
  2014年   42篇
  2013年   86篇
  2012年   61篇
  2011年   68篇
  2010年   50篇
  2009年   53篇
  2008年   62篇
  2007年   74篇
  2006年   41篇
  2005年   31篇
  2004年   36篇
  2003年   30篇
  2002年   36篇
  2001年   14篇
  2000年   14篇
  1999年   16篇
  1998年   12篇
  1997年   10篇
  1996年   18篇
  1995年   10篇
  1994年   8篇
  1993年   5篇
  1992年   9篇
  1991年   6篇
  1990年   8篇
  1989年   7篇
  1988年   8篇
  1987年   3篇
  1986年   9篇
  1985年   8篇
  1984年   7篇
  1983年   8篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1978年   3篇
  1975年   4篇
  1974年   2篇
  1973年   10篇
  1955年   2篇
  1931年   2篇
排序方式: 共有1142条查询结果,搜索用时 703 毫秒
191.
192.
The potential induction of a programmed cell death (PCD) in Trypanosoma b. brucei by 55 alkaloids of the quinoline, quinolizidine, isoquinoline, indole, terpene, tropane, steroid, and piperidine type was studied by measuring DNA fragmentation and changes in mitochondrial membrane potential. For comparison, the induction of apoptosis by the same alkaloids in human leukemia cells (Jurkat APO-S) was tested. Several alkaloids of the isoquinoline, quinoline, indole and steroidal type (berberine, chelerythrine, emetine, sanguinarine, quinine, ajmalicine, ergotamine, harmine, vinblastine, vincristine, colchicine, chaconine, demissidine and veratridine) induced programmed cell death, whereas quinolizidine, tropane, terpene and piperidine alkaloids were mostly inactive. Effective PCD induction (EC(50) below 10 microM) was caused in T. brucei by chelerythrine, emetine, sanguinarine, and chaconine. The active alkaloids can be characterized by their general property to inhibit protein biosynthesis, to intercalate DNA, to disturb membrane fluidity or to inhibit microtubule formation.  相似文献   
193.
Despite intensive research on sustainable elastomers, achieving elastic vitrimers with significantly improved mechanical properties and recyclability remains a scientific challenge. Herein, inspired by the classical elasticity theory, we present a design principle for ultra-tough and highly recyclable elastic vitrimers with a defined network constructed by chemically crosslinking the pre-synthesized disulfide-containing polydimethylsiloxane (PDMS) chains with tetra-arm polyethylene glycol (PEG). The defined network is achieved by the reduced dangling short chains and the relatively uniform molecular weight of network strands. Such elastic vitrimers with the defined network, i.e., PDMS-disulfide-D, exhibit significantly improved mechanical performance than random analogous, previously reported PDMS vitrimers, and even commercial silicone-based thermosets. Moreover, unlike the vitrimers with random network that show obvious loss in mechanical properties after recycling, those with the defined network enable excellent thermal recyclability. The PDMS-disulfide-D also deliver comparable electrochemical signals if utilized as substrates for electromyography sensors after the recycling. The multiple relaxation processes are revealed via a unique physical approach. Multiple techniques are also applied to unravel the microscopic mechanism of the excellent mechanical performance and recyclability of such defined network.  相似文献   
194.
Gas-phase complexes of [n]helicenes with n=6, 7 and 8 and the silver(I) cation are generated utilizing electrospray ionization mass spectrometry (ESI-MS). Besides the well-established [1 : 1] helicene/Ag+-complex in which the helicene provides a tweezer-like surrounding for the Ag+, there is also a [2 : 1] complex formed. Density functional theory (DFT) calculations in conjunction with energy-resolved collision-induced dissociation (ER-CID) experiments reveal that the second helicene attaches via π-π stacking to the first helicene, which is part of the pre-formed [1 : 1] tweezer complex with Ag+. For polycyclic aromatic hydrocarbons (PAHs) of planar structure, the [2 : 1] complex with silver(I) is typically structured as an Ag+-bound dimer in which the Ag+ would bind to both PAHs as the central metal ion (PAH–Ag+–PAH). For helicenes, the Ag+-bound dimer is of similar thermochemical stability as the π-π stacked dimer, however, it is kinetically inaccessible. Coronene (Cor) is investigated in comparison to the helicenes as an essentially planar PAH. In analogy to the π-π stacked dimer of the helicenes, the Cor−Ag+−Cor−Cor complex is also observed. Competition experiments using [n]helicene mixtures reveal that the tweezer complexes of Ag+ are preferably formed with the larger helicenes, with n=6 being entirely ignored as the host for Ag+ in the presence of n=7 or 8.  相似文献   
195.
Herein we report a novel strategy for the in situ synthesis of the silver colloids for LoC-SERS applications. Silver nanoparticles are obtained in a segmented flow based glass microfluidic chip by the reduction of silver ions with hydrazine in ammonium hydroxide solution. Citrate ions are used as protecting agents. The synthesized nanoparticles are characterized by UV-VIS spectroscopy, SEM and TEM imaging. The SERS performance of the in situ synthesized nanoparticles is tested by using adenine as a test analyte right after the colloid synthesis. Reproducibility is tested by repeating the measurements three times at independent days applying the same measurement conditions. In comparison with nanoparticles synthesized in a conventional strategy i.e. in a large batch, chip synthesized nanoparticles show a better day-to-day and long-term reproducibility, lower detection limits and broader working ranges. The great advantage offered by the in situ synthesized colloids combined with the already proven potential of LoC-SERS for bioanalytics, raises the possibility of the employment of LoC-SERS as a fast and sensitive analytic tool in a plethora of applications.  相似文献   
196.
The direct depolymerization of SiO2 to distillable alkoxysilanes has been explored repeatedly without success for 85 years as an alternative to carbothermal reduction (1900 °C) to Simet, followed by treatment with ROH. We report herein the base‐catalyzed depolymerization of SiO2 with diols to form distillable spirocyclic alkoxysilanes and Si(OEt)4. Thus, 2‐methyl‐2,4‐pentanediol, 2,2,4‐trimethyl‐1,3‐pentanediol, or ethylene glycol (EGH2) react with silica sources, such as rice hull ash, in the presence of NaOH (10 %) to form H2O and distillable spirocyclic alkoxysilanes [bis(2‐methyl‐2,4‐pentanediolato) silicate, bis(2,2,4‐trimethyl‐1,3‐pentanediolato) silicate or Si(eg)2 polymer with 5–98 % conversion, as governed by surface area/crystallinity. Si(eg)2 or bis(2‐methyl‐2,4‐pentanediolato) silicate reacted with EtOH and catalytic acid to give Si(OEt)4 in 60 % yield, thus providing inexpensive routes to high‐purity precipitated or fumed silica and compounds with single Si−C bonds.  相似文献   
197.
Thermal expansion of four strontium borates has been studied by high-temperature powder X-ray diffraction. Strong anisotropy of thermal expansion is observed for the structures of Sr3B2O6 (0D) and SrB2O4 (1D) based on triangles BO3 only: The high expansion occurs perpendicular to the BO3 plane, i.e. along the direction of the less strong bonds in the crystal structure. The monoclinic Sr2B16O26 (3D) borate expands dramatically due to shear deformations in monoclinic plane: Monoclinic β′ angle changes significantly because it is not fixed by symmetry. In contrast to these borates, SrB4O7 (3D) borate built up from tetrahedra only expands almost isotropically. Average value of volume expansion is 36 × 10?6 K?1 for studied Sr-borates. Tendency of slight decrease in the volume thermal expansion and sharp decrease in the melting points is observed with an increase in B2O3 content as a result of the degree of polymerization increase. As the B2O3 content grows in Sr-borates, the structural complexity increases in the SrO–B2O3 system due to more complex anionic structure. Inverse “melting temperature decrease—structural complexity increase” correlation is revealed.  相似文献   
198.
Single‐molecule force spectroscopy based on atomic force microscopy (AFM‐SMFS) has allowed the measurement of the intermolecular forces involved in protein‐protein interactions at the molecular level. While intramolecular interactions are routinely identified directly by the use of polyprotein fingerprinting, there is a lack of a general method to directly identify single‐molecule intermolecular unbinding events. Here, we have developed an internally controlled strategy to measure protein–protein interactions by AFM‐SMFS that allows the direct identification of dissociation force peaks while ensuring single‐molecule conditions. Single‐molecule identification is assured by polyprotein fingerprinting while the intermolecular interaction is reported by a characteristic increase in contour length released after bond rupture. The latter is due to the exposure to force of a third protein that covalently connects the interacting pair. We demonstrate this strategy with a cohesin–dockerin interaction.  相似文献   
199.
Wang Y  Vera CI  Lin Q 《Organic letters》2007,9(21):4155-4158
A mild, photoactivated 1,3-dipolar cycloaddition procedure was successfully developed for the synthesis of polysubstituted pyrazolines. This procedure involved the in situ generation of the reactive nitrile imine dipoles using a hand-held UV lamp at 302 nm, followed by spontaneous cycloaddition with a broad range of 1,3-dipolarophiles with excellent solvent compatibility, functional group tolerance, regioselectivity, and yield.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号