首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   4篇
  国内免费   1篇
化学   73篇
力学   7篇
数学   10篇
物理学   11篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   13篇
  2010年   8篇
  2009年   7篇
  2008年   8篇
  2007年   9篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1995年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有101条查询结果,搜索用时 31 毫秒
71.
Three novel vic-dioximes: cyclohexylamine-p-tolylglyoxime (L1H2), t-butylamine-p-tolylglyoxime (L2H2) and sec-butylamine-p-tolylglyoxime (L3H2) were prepared by the reaction of anti-p-tolylchloroglyoxime with cyclohexylamine, t-butylamine and sec-butylamine in absolute THF. The detection of H-bonding in all of the Ni(II) complexes by i.r. revealed the square-planar MN4 coordination of mononuclear complexes. MN4 coordination of the [(L1H)2Ni] complex was also determined by 1H and 13C-n.m.r spectroscopy. Mononuclear complexes with a 1:2 metal-ligand ratio were prepared using Ni(II) salts. All Ni(II) complexes are insoluble in common solvents. The ligands and complexes were characterized by elemental analyses, FT-i.r., u.v.–vis., 1H and 13C-n.m.r. spectra, magnetic susceptibility measurements, thermogravimetric analyses (t.g.a.) and cyclic voltammetry.  相似文献   
72.
Three new vic-dioxime ligands, [N-(ethyl-4-amino-1-piperidine carboxylate)-phenylglyoxime (L1H2), N-(ethyl-4-amino-1-piperidine carboxylate)-glyoxime (L2H2), and N,N′-bis(ethyl-4-amino-1-piperidine carboxylate)-glyoxime (L3H2)], and their Co(II) with Cu(II) metal complexes, were synthesized for the first time. Mononuclear complexes of these ligands with a 1:2 metal-ligand ratio were prepared with Co(II) and Cu(II) salts. The BF2+-capped Co(II) and mononuclear complexes of the vic-dioxime were prepared for [Co(L1·BF2)2] and [Co(L2·BF2)2]. The ligands act in a polydentate fashion bonding through nitrogen atoms in the presence of a base, as do most vic-dioximes. The cobalt(II) and copper(II) complexes are non-electrolytes as shown by their molar conductivities (ΛM) in DMF. The structures of the ligands and complexes were determined by elemental analyses, FT-i.r., u.v.–vis., 1H- and 13C-n.m.r. spectra, magnetic susceptibility measurements, and molar conductivity. The comparative electrochemical studies show that the stabilities of the reduced or oxidized species and the electrode potentials of the complexes are affected by the substituents attached on the oxime moieties of the complexes.  相似文献   
73.
A biosensor for phosphate determination with the flow-injection system was developed using rhodium nanoparticles modified Poly(pyrrole-co-[1-(2-aminophenyl) pyrrole])/pyruvate oxidase. The biosensor showed a very wide linearity up to 70 mM phosphate concentration compared to previously reports, response time of 4 s., operational stability with a relative standard deviation of 0.009 % and accuracy of 99.4 %±0.949 at a flow rate of 2.0 Ml min.−1 at exactly −0.68 V. Detection limit were calculated to be 21±0.001 μM by preserving 81.1 % of its initial response at the end of 16th days. Artificial urine was analyzed without dilution to investigate biosensor performance.  相似文献   
74.
The synthesis, structure, spectroscopic and electro-spectrochemical properties of sterically constrained Schiff-base ligands (LnH) (n = 1, 2, and 3) (L = N-[m-(methylmercapto)aniline]-3,5-di-t-butylsalicylaldimine, m = 4, 3, and 2 positions, respectively) and their copper(II) complexes [Cu(Ln)2] are described. Three new dissymmetric bidentate salicylaldimine ligands containing a donor set of ONNO were prepared by reaction of different primary amine with 3,5-di-t-butyl-2-hydroxybenzaldehyde (3,5-DTB). The copper(II) metal complexes of these ligands were synthesized by treating an methanolic solution of the appropriate ligand with an equimolar amount of Cu(Ac)2 · H2O. The ligands and their copper complexes were characterized by FT-IR, UV–Vis, 1H and 13C NMR and elemental analysis methods in addition to magnetic susceptibility, molar conductivity, and spectroelectrochemical techniques. Analytical data reveal that copper(II) metal complexes possess 1:2 metal–ligand ratios. On the basis of molar conductance, the copper(II) metal complexes could be formulated as [Cu(Ln)2] due to their non-electrolytic nature in dimethylforamide (DMF). The room temperature magnetic moments of [Cu(Ln)2] complexes are in the range of 1.82–1.90 B.M which are typical for mononuclear of Cu(II) compounds with a S = 1/2 spin state. The complexes did not indicate antiferromagnetic coupling of spin at this temperature. Electrochemical and thin-layer spectroelectrochemical studies of the ligands and complexes were comparatively studied in the same experimental conditions. The results revealed that all ligands displayed irreversible reduction processes and the cathodic peak potential values of (L3H) are shifted towards negative potential values compared to those of (L1H) and (L2H). It is attributed to the weak-electron-donating methyl sulfanyl group substituted on the ortho (m = 2) position of benzene ring. Additionally, all copper complexes showed one quasi-reversible one-electron reduction process in the scan rates of 0.025–0.50 V s−1, which are assigned to simple metal-based one-electron processes; [Cu(2+)(Ln)2] + e → [Cu(1+)(Ln)2]. The spectral changes corresponding to the ligands and complexes during the applied potential in a thin-layer cell confirmed the ligand and metal-based reduction processes, respectively.  相似文献   
75.
The peridynamic theory is advantageous for problems involving damage since the peridynamic equation of motion is valid everywhere, regardless of existing discontinuities, and an external criterion is not necessary for predicting damage initiation and propagation. However, the current solution methods for the equations of peridynamics utilize explicit time integration, which poses difficulties in simulations of most experiments under quasi-static conditions. Thus, there is a need to obtain steady-state solutions in order to validate peridynamic predictions against experimental measurements. This study presents an extension of dynamic relaxation methods for obtaining steady-state solutions of nonlinear peridynamic equations.  相似文献   
76.
Journal of Nanoparticle Research - A comprehensive study of the antibacterial (bacteriostatic and bactericidal) properties of non-doped carbon nanodots (CNDs), nitrogen-doped (N-doped), and...  相似文献   
77.
78.
A novel Platinum nanoparticle (PtNPs) modified Poly(pyrrole-co-1-(2-Aminophenyl)pyrrole)/Urease film coated Au electrode was designed for amperometric detection of urea. PtNPs quantity, film density and pH were optimized and interference effect of some substances readily found in municipal wastewater and blood was investigated. The biosensor responded to urea with a measurement concentration range of 0.1 to 30 mM, a sensitivity of 31.8 μA mM−1 cm−2, a LOD of 7.58 μM, an accuracy of 104 % and a RSD% of only 0.82. It sensed the concentration of urea in the municipal sewage water with recovery of 97.6 % (n=3) and remained 78 % of its initial response at 28th day. Results confirmed that PtNPs with strong conductivity improved the electron transfer ability of the working electrode.  相似文献   
79.
Sideridiol (ent-7α,18β-dihydroxykaur-15-ene) one of the ent-kaurene diterpenoid, is isolated from the genus Sideritis L. belongs to the family of Lamiaceae. The vibrational frequencies of sideridiol in the ground state have been calculated using the Density Functional Theory (DFT) method with the 6-31G(d) and 6 31+G(d,p) basis sets. The calculated vibrational frequencies have been compared with that of obtained experimental IR spectrum.  相似文献   
80.
High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (“big data”) that must be processed efficiently and rapidly. This can be compounded by large-area imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode “Mosaic Datacube” approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, but requires additional processing as compared to feature-based processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.
Graphical abstract ?
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号