排序方式: 共有106条查询结果,搜索用时 0 毫秒
51.
Two vic-dioxime ligands (LxH2) containing morpholine group have been synthesized from 4-[2-(dimethylaminoethyl)] morpholine with anti-phenylchloroglyoxime or anti-monochloroglyoxime in absolute THF at -15 ℃. Reaction of two vic-dioxime ligands with MCl2·nH2O (M: Ni, Cu or Co and n=2 or 6) salts in 1 : 2 molar ratio afforded metal complexes of type [M(LxH)2] or [M(LxH)2·2H2O]. All of metal complexes are non-electrolytes as shown by their molar conductivities (Am) in DMF (dimethyl formamide) at 10^-3 mol·L^-1. Structures of the ligands and metal complexes have been solved by elemental analyses, FT-IR, UV-Vis, ^1H NMR and ^13C NMR, magnetic susceptibility measurements, molar conductivity measurements. Furthermore, redox properties of the metal complexes were investigated by cyclic voltammetry. 相似文献
52.
Ahmet Kilic Dilek Kilinc Ismail Yilmaz Ismail Ozdemir 《Journal of organometallic chemistry》2010,695(5):697-666
Treatment of the salicylaldimine ligands (L1H, L2H, L3H, L4H and L5H) with palladium(II) acetate in absolute ethanol gave the orthopalladation dinuclear [Pd(L1)(μ-OAc)]2, [Pd(L2)(μ-OAc)]2 and mononuclear [Pd(L3)2] with the tetradentate ligands [N, C, O] or [N, O] moiety. The ligands L1H and L2H are coordinated through the imine nitrogen and aromatic ortho carbon atoms, whereas the ligand L3H coordinated through the imine nitrogen and phenolic oxygens atoms. The Pd(II) complexes have a square-planar structure and were found to be effective catalysts for the hydrogenation of both nitrobenzene and cyclohexene. These metal complexes were also tested as catalysts in Suzuki-Miyaura coupling of aryl bromide in the presence of K2CO3. The catalytic studies showed that the introduction of different groups on the salicyl ring of the molecules effected the catalytic activity towards hydrogenation of nitrobenzene and cyclohexene in DMF at 25 and 45 °C. The Pd(II) complexes easily prepared from cheap materials could be used as versatile and efficient catalysts for different C-C coupling reactions (Suzuki-Miyaura reactions). The structure of ligands and their complexes was characterized by UV-Vis, FT-IR, 1H and 13C NMR, elemental analysis, molar conductivity, as well as by electrochemical techniques. 相似文献
53.
54.
55.
56.
Maxwell I. Martin Avik K. Pati Chathura S. Abeywickrama Sukanta Bar Zeliha Kilic Roger B. Altman Scott C. Blanchard 《Journal of Physical Organic Chemistry》2023,36(1):e4449
In this perspective, we highlight the recent progress in utilizing Baird aromatic species to improve fluorophore performance in microscopy and imaging applications. We specifically focus on the origins of the use of Baird aromaticity in fluorescence applications, the development of “self-healing” fluorophores leveraging cyclooctatetraene’ Baird aromaticity, and where developments need to occur to optimize this technology. 相似文献
57.
Yiao Wang Ozgun Kilic Clifford M. Csizmar Sudhat Ashok James L. Hougland Mark D. Distefano Carston R. Wagner 《Chemical science》2021,12(1):331
Multicellular biology is dependent on the control of cell–cell interactions. These concepts have begun to be exploited for engineering of cell-based therapies. Herein, we detail the use of a multivalent lipidated scaffold for the rapid and reversible manipulation of cell–cell interactions. Chemically self-assembled nanorings (CSANs) are formed via the oligomerization of bivalent dihydrofolate reductase (DHFR2) fusion proteins using a chemical dimerizer, bis-methotrexate. With targeting proteins fused onto the DHFR2 monomers, the CSANs can target specific cellular antigens. Here, anti-EGFR or anti-EpCAM fibronectin-DHFR2 monomers incorporating a CAAX-box sequence were enzymatically prenylated, then assembled into the corresponding CSANs. Both farnesylated and geranylgeranylated CSANs efficiently modified the cell surface of lymphocytes and remained bound to the cell surface with a half-life of >3 days. Co-localization studies revealed a preference for the prenylated nanorings to associate with lipid rafts. The presence of antigen targeting elements in these bifunctional constructs enabled them to specifically interact with target cells while treatment with trimethoprim resulted in rapid CSAN disassembly and termination of the cell–cell interactions. Hence, we were able to determine that activated PBMCs modified with the prenylated CSANs caused irreversible selective cytotoxicity toward EGFR-expressing cells within 2 hours without direct engagement of CD3. The ability to disassemble these nanostructures in a temporally controlled manner provides a unique platform for studying cell–cell interactions and T cell-mediated cytotoxicity. Overall, antigen-targeted prenylated CSANs provide a general approach for the regulation of specific cell–cell interactions and will be valuable for a plethora of fundamental and therapeutic applications.Multicellular biology is dependent on the control of cell-cell interactions. The prenylated antigen-targeted CSANs provide a general approach for the regulation of specific cell-cell interactions and will be valuable for a plethora of fundamental and therapeutic applications. 相似文献
58.
Abstract The acrylamide family of monomers is a highly versatile group of chemical intermediates. The major use of these monomers is the preparation of polymers and copolymers having a highly polar functional group attached to the backbone. 相似文献
59.
The reaction of 3-acetoxyaminoquinazolinone (QNHOAc) with various sulfoxides in the presence of HMDS as an acetic acid scavenger, afforded the corresponding sulfoximides in good yields. Sulfoximidation of phenyl methyl sulfoxide using a Q*NHOAc having a stereogenic centre on its 2-position gave the products in 1.3:1 ratio of diastereomers. 相似文献
60.