首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474595篇
  免费   2823篇
  国内免费   741篇
化学   213703篇
晶体学   7048篇
力学   28632篇
综合类   13篇
数学   75899篇
物理学   152864篇
  2021年   4069篇
  2020年   4411篇
  2019年   5344篇
  2018年   12585篇
  2017年   12894篇
  2016年   12640篇
  2015年   5201篇
  2014年   9157篇
  2013年   17477篇
  2012年   16792篇
  2011年   24026篇
  2010年   17538篇
  2009年   18009篇
  2008年   22189篇
  2007年   24268篇
  2006年   14085篇
  2005年   15260篇
  2004年   13265篇
  2003年   12828篇
  2002年   11879篇
  2001年   11264篇
  2000年   8923篇
  1999年   6559篇
  1998年   5968篇
  1997年   5865篇
  1996年   5524篇
  1995年   4793篇
  1994年   4934篇
  1993年   4902篇
  1992年   5100篇
  1991年   5531篇
  1990年   5400篇
  1989年   5419篇
  1988年   5192篇
  1987年   5194篇
  1986年   4866篇
  1985年   5892篇
  1984年   6181篇
  1983年   5227篇
  1982年   5423篇
  1981年   5097篇
  1980年   4715篇
  1979年   5443篇
  1978年   5476篇
  1977年   5658篇
  1976年   5737篇
  1975年   5381篇
  1974年   5213篇
  1973年   5458篇
  1972年   4417篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A method was developed for free‐radical polymerization in the confines of a hollow latex particle. Hollow particles were prepared via the dynamic swelling method from polystyrene seed and divinylbenzene and had hollows of 500–1000 nm. So that these hollow poly(divinylbenzene) particles could function as submicrometer reactors, the particles were filled with a monomer (N‐isopropylacrylamide) via the dispersion of the dried particles in the molten monomer. The monomer that was not contained in the hollows was removed by washing and gentle abrasion. Free‐radical polymerization was then initiated by γ radiolysis in the solid state. Transmission electron microscopy showed that poly(N‐isopropylacrylamide) formed in the hollow interior of the particles, which functioned as submicrometer reactors. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5706–5713, 2004  相似文献   
992.
The synthesis of ORganically MOdified SILica (ORMOSIL) particles has been carried out using both the hydrolytic and non-hydrolytic sol-gel routes. The hybrid (nano)composites are organically modified with an alkyl or aryl group covalently bonded to silicon. Hybrids have been synthesised in an aqueous sol-gel process by a modified Stöber route, producing spherical nanoparticles with diameters in the range 50–300 nm. The size of the particles can be controlled by control of certain reaction parameters. Smaller ormosil nanoparticles can be synthesised by a base-catalysed emulsion polymerisation route, by varying the type and concentration of surfactant and precursor feed rate. In this case, particles in the size range 3.5–10 nm can be obtained. Hybrids have been synthesised from hyperbranched polyesters by encapsulation in a silica matrix using the hydrolytic sol-gel route. Optimisation of the reaction conditions allows the hybrids to be produced as isolated sub-micron spherical particles. Ormosil particles have also been synthesised using the non-hydrolytic sol-gel route, which may lead to products of different morphologies because of the different polarity of the reaction medium. Different reaction conditions were studied in order to optimise the size and shape of the particles, including choice of solvent, use of surfactants and addition of polystyrene. Dimethylsulfoxide acts as a novel oxygen donor for the catalyst-free formation of colourless silsesquioxanes.  相似文献   
993.
Osteoporosis is a bone condition that is caused mainly by the degradation of trabecular and cortical bone resulting in the decrease of bone strength and eventually leads to bone fracture. A low angle X-ray scattering (LAXS) system that uses mainly the coherent scattering process for the characterisation of materials was constructed to study such bone conditions. Several finger phantoms were fabricated to simulate bone of varying densities. The LAXS method was able to identify the changes in bone density quite well by comparing energy dispersive X-ray diffraction patterns as well as the angular patterns. Quantitative information can be extracted from such patterns that relate to bone loss. Signature patterns at low exposure times were produced in order to reduce the dose received with reasonable identification power but at slightly higher statistical errors compared with long exposure patterns. Use of other parameters to increase the sensitivity was attempted.  相似文献   
994.
995.
Atomic force microscopy (AFM) has been used to visualize the plastic deformation mechanisms that are responsible for the yielding of semicrystalline polymers of low degree of crystallinity (<50%). Indeed, AFM, if operated in suitable conditions, is able to image both the amorphous and the crystalline phases. Polyamide 6 films have been drawn at temperatures T < 160 °C. Postmortem AFM observations show that, at yield, shear bands nucleate and propagate in the amorphous phase. They cross the crystalline lamellae and run over the whole surface of the sample. By crossing the lamellae, they form nanoblocks of uniform size. Neither the size of the nanoblocks nor the angle between the tensile axis and the shear bands can be explained in terms of crystal plasticity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 687–701, 2004  相似文献   
996.
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004  相似文献   
997.
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004  相似文献   
998.
One of the essential differences in the design of bubble pressure tensiometers consists in the geometry of the measuring capillaries. To reach extremely short adsorption times of milliseconds and below, the so-called deadtime of the capillaries must be of the order of some 10 ms. In particular, for concentrated surfactant solutions, such as micellar solutions, short deadtimes are needed to minimize the initial surfactant load of the generated bubbles. A theoretical model is derived and confirmed by experiments performed for a wide range of experimental conditions, mainly in respect to variations in deadtime and bubble volume.  相似文献   
999.
The crystallization behavior of a series of poly(ethylene‐co‐butylene naphthalate) (PEBN) random copolymers was studied. Wide‐angle X‐ray diffraction (WAXD) patterns showed that the crystallization of these copolymers could occur over the entire range of compositions. This resulted in the formation of poly(ethylene naphthalate) or poly(butylene naphthalate) crystals, depending on the composition of the copolymers. Sharp diffraction peaks were observed, except for 50/50 PEBN. Eutectic behavior was also observed. This showed isodimorphic cocrystallization of the PEBN copolymers. The variation of the enthalpy of fusion of the copolymers with the composition was estimated. The isothermal and nonisothermal crystallization kinetics were studied. The crystallization rates were found to decrease as the comonomer unit content increased. The tensile properties were also measured and were found to decrease as the butylene naphthalate content of the copolymers increased. For initially amorphous specimens, orientation was proved by WAXD patterns after drawing, but no crystalline reflections were observed. However, the fast crystallization of drawn specimens occurred when they were heated above the glass‐transition temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 843–860, 2004  相似文献   
1000.
As‐cast films of poly(2,5‐benzimidazole) exhibit uniplanar orientation in which the planes of the aromatic rings lie parallel to the film surface. Upon doping with phosphoric acid, the original crystalline order is lost, but the doped film can be stretched to produce films with uniaxial orientation. After thermal annealing at 540 °C, nine Bragg reflections are resolved in the fiber diagram, and these are indexed by an orthorhombic unit cell with the dimensions a = 18.1 Å, b = 3.5 Å, and c = 11.4 Å, containing four monomer units of two chains. The absence of odd‐order 00l reflections points to a 21 chain conformation, which is probably planar so that the aromatic units can be stacked along the b axis. The water and phosphoric acid contents of the crystalline structure cannot be determined exactly because of the presence of extensive amorphous regions that probably have different solvation. The best agreement between the observed and calculated intensities is for an idealized structure containing two phosphoric acids and two water molecules per unit cell. However, the phosphoric acid is probably present mainly in the form of pyrophosphoric acid and its higher oligomers. In addition, the X‐ray data are consistent with a more disordered structure containing chains with random (up and down) polarity and a lack of c‐axis registry. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2576–2585, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号