首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1499篇
  免费   16篇
  国内免费   6篇
化学   836篇
晶体学   3篇
力学   23篇
数学   154篇
物理学   505篇
  2023年   8篇
  2022年   11篇
  2021年   13篇
  2020年   12篇
  2019年   17篇
  2018年   8篇
  2017年   10篇
  2016年   14篇
  2015年   11篇
  2014年   20篇
  2013年   66篇
  2012年   58篇
  2011年   55篇
  2010年   44篇
  2009年   39篇
  2008年   65篇
  2007年   61篇
  2006年   77篇
  2005年   73篇
  2004年   57篇
  2003年   53篇
  2002年   45篇
  2001年   37篇
  2000年   41篇
  1999年   23篇
  1998年   24篇
  1997年   18篇
  1996年   29篇
  1995年   22篇
  1994年   23篇
  1993年   31篇
  1992年   38篇
  1991年   15篇
  1990年   19篇
  1989年   18篇
  1988年   28篇
  1987年   14篇
  1986年   16篇
  1985年   23篇
  1984年   23篇
  1983年   13篇
  1982年   24篇
  1981年   18篇
  1980年   20篇
  1979年   14篇
  1978年   15篇
  1977年   14篇
  1976年   20篇
  1975年   21篇
  1973年   11篇
排序方式: 共有1521条查询结果,搜索用时 671 毫秒
81.
An efficient method for analyzing illegal and medicinal drugs in whole blood using fully automated sample preparation and short ultra-high-performance liquid chromatography–tandem mass spectrometry (MS/MS) run time is presented. A selection of 31 drugs, including amphetamines, cocaine, opioids, and benzodiazepines, was used. In order to increase the efficiency of routine analysis, a robotic system based on automated liquid handling and capable of handling all unit operation for sample preparation was built on a Freedom Evo 200 platform with several add-ons from Tecan and third-party vendors. Solid-phase extraction was performed using Strata X-C plates. Extraction time for 96 samples was less than 3 h. Chromatography was performed using an ACQUITY UPLC system (Waters Corporation, Milford, USA). Analytes were separated on a 100 mm?×?2.1 mm, 1.7 μm Acquity UPLC CSH C18 column using a 6.5 min 0.1 % ammonia (25 %) in water/0.1 % ammonia (25 %) in methanol gradient and quantified by MS/MS (Waters Quattro Premier XE) in multiple-reaction monitoring mode. Full validation, including linearity, precision and trueness, matrix effect, ion suppression/enhancement of co-eluting analytes, recovery, and specificity, was performed. The method was employed successfully in the laboratory and used for routine analysis of forensic material. In combination with tetrahydrocannabinol analysis, the method covered 96 % of cases involving driving under the influence of drugs. The manual labor involved in preparing blood samples, solvents, etc., was reduced to a half an hour per batch. The automated sample preparation setup also minimized human exposure to hazardous materials, provided highly improved ergonomics, and eliminated manual pipetting.
Figure
Robotic setup for fully automated solid-phase extraction of whole blood  相似文献   
82.
The coupling between an electrochemical cell (EC) and a mass spectrometer (MS) is a useful screening tool (EC-MS) to study the oxidative transformation pathways of various electroactive species. For that purpose, we showed that the EC-MS method, carried out in the presence and absence of isotope 18O labeled water leads not only to a fast identification of oxidation products but also leads to a fast elucidation of the mechanism pathway reaction. We examined herein the case of the electrochemical hydrolysis of activated aromatic ether. Acebutolol (β-blockers) was selected herein as model of activated aromatic ether, and its electrochemical oxidation was examined in both the presence and absence of isotope 18O labeled water. To elucidate electrochemical hydrolysis pathway reaction: O-dealkylation or O-dealkoxylation, our approach was used to prove its applicability. The electrochemical oxidation mechanism was then elucidated showing an O-dealkoxylation reaction. In addition, density functional theory (DFT) calculations fully support the experimental conclusions.  相似文献   
83.
The synthesis, structure, and physical properties of ionic liquids (IL) bearing the novel [Al(O–C6H4–CN)4] ion as counterion to the commonly used [NR4]+, [PR4]+ and imidazolium ions are reported. Both the influence of the alkyl chain length as well as the functionalization with cyano groups is studied. These ILs are easily obtained by reaction of Ag[Al(O–C6H4–CN)4] with the corresponding ammonium, phosphonium, and imidazolium halides. The stability towards electrophilic cations was investigated. All prepared salts have a window for the liquid phase of ca. 200 °C and are thermally stable up to 450 °C. The solid‐state structures reveal only weak cation ··· anion and anion ··· anion interactions in accord with the observed low melting points (glass transition points).  相似文献   
84.
Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution. The use of a detergent or other amphipathic agents is required to overcome the intrinsic incompatibility between the large lipophilic surfaces displayed by the membrane proteins in their native forms and the polar solvent molecules. Here, we introduce new tripod amphiphiles displaying favourable behaviours toward several membrane protein systems, leading to an enhanced protein solubilisation and stabilisation compared to both conventional detergents and previously described tripod amphiphiles.  相似文献   
85.
86.
We report the development of a dual‐mode mass‐directed supercritical fluid chromatography and reversed‐phase liquid chromatography purification system. The addition of a third pump allows for flexible mobile phase control between the two techniques, and enables operation of either chromatography mode within minutes by activation of a set of switching valves on a single system. Software control, fluidic pathways, interface to the mass spectrometer, and fraction collection have been modified for compatibility between both separation methods. The conditioning solvent and tuning parameters for the mass spectrometer were adjusted to achieve an ideal signal trace in either mode with good linearity (r2 > 0.970) over a range of concentrations and minimal noise for accurate peak detection and isolation. The registration success rate is 90% and overall sample recovery for either technique is 80?90%. Combining two orthogonal separation and purification modes in one single system has improved the purification throughput of complex mixtures and has been a valuable, cost‐saving tool in our laboratory.  相似文献   
87.
While metabolomics is increasingly used to investigate the food metabolome and identify new markers of food exposure, limited attention has been given to the validation of such markers. The main objectives of the present study were to (1) discover potential food exposure markers (PEMs) for a range of plant foods in a study setting with a mixed dietary background and (2) validate PEMs found in a previous meal study. Three-day weighed dietary records and 24-h urine samples were collected three times during a 6-month parallel intervention study from 107 subjects randomized to two distinct dietary patterns. An untargeted UPLC-qTOF-MS metabolomics analysis was performed on the urine samples, and all features detected underwent strict data analyses, including an iterative paired t test and sensitivity and specificity analyses for foods. A total of 22 unique PEMs were identified that covered 7 out of 40 investigated food groups (strawberry, cabbages, beetroot, walnut, citrus, green beans and chocolate). The PEMs reflected foods with a distinct composition rather than foods eaten more frequently or in larger amounts. We found that 23 % of the PEMs found in a previous meal study were also valid in the present intervention study. The study demonstrates that it is possible to discover and validate PEMs for several foods and food classes in an intervention study with a mixed dietary background, despite the large variability in such a dataset. Final validation of PEMs for intake of foods should be performed by quantitative analysis.
Figure
Examples of two urinary exposure markers for cabbage (left) and beetroot (right) found in the study from an untargeted LC‐MS metabolomics analysis of urine samples and self‐reported food intake data  相似文献   
88.
Abstract

The new guanidine alkaloid Dendrobeaniamine A (1) was isolated from the organic extract of the Arctic marine bryozoan Dendrobeania murrayana. The chemical structure of 1 was elucidated by spectroscopic experiments, including 1D and 2D NMR and HRESIMS analysis. Compound 1 is a lipoamino acid, consisting of a C12 fatty acid anchored to the amino acid arginine. The bioactivity of 1 was evaluated using cellular and biochemical assays, but the compound did not show cytotoxic, antimicrobial, anti-inflammatory or antioxidant activities  相似文献   
89.
Despite over a century of modern surfactant science, the kinetic pathways of morphological transitions in micellar systems are still not well understood. This is mainly as a result of the lack of sufficiently fast methods that can capture the structural changes of such transitions. Herein, a simple surfactant system consisting of sodium dodecyl sulfate (SDS) in aqueous NaCl solutions is investigated. Combining synchrotron radiation small‐angle X‐ray scattering (SAXS) with fast stopped‐flow mixing schemes allows monitoring the process where polymer‐like micelles are formed from globular micelles when the salt concentration is suddenly increased. The results show that “worm‐like” micelles are formed by fusion of globular micelles and short cylinders in a fashion that bears similarities to a step‐like polymerization process.  相似文献   
90.
[Sr(C5H7NO4)]·6H2O, (I), and [Sr(C5H8NO4)2]·5H2O, (II), both crystallize with similar strontium–glutamate–water layers. In (I), the neutral layers are connected through hydrogen bonds by water mol­ecules, while in (II), the positively charged layers are connected through hydrogen bonds and electrostatic inter­actions by inter­leaving layers of hydrogen glutamate anions and water mol­ecules.  相似文献   
[首页] « 上一页 [4] [5] [6] [7] [8] 9 [10] [11] [12] [13] [14] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号