首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2356篇
  免费   82篇
  国内免费   9篇
化学   1486篇
晶体学   57篇
力学   72篇
数学   240篇
物理学   592篇
  2023年   26篇
  2022年   48篇
  2021年   45篇
  2020年   61篇
  2019年   61篇
  2018年   41篇
  2017年   47篇
  2016年   74篇
  2015年   66篇
  2014年   97篇
  2013年   185篇
  2012年   133篇
  2011年   165篇
  2010年   91篇
  2009年   88篇
  2008年   135篇
  2007年   145篇
  2006年   79篇
  2005年   82篇
  2004年   69篇
  2003年   44篇
  2002年   37篇
  2001年   32篇
  2000年   20篇
  1999年   9篇
  1998年   13篇
  1997年   13篇
  1996年   21篇
  1995年   20篇
  1994年   27篇
  1993年   27篇
  1992年   20篇
  1991年   9篇
  1990年   11篇
  1989年   15篇
  1988年   22篇
  1987年   21篇
  1986年   20篇
  1985年   26篇
  1984年   24篇
  1983年   27篇
  1982年   20篇
  1981年   21篇
  1980年   22篇
  1979年   18篇
  1978年   28篇
  1977年   13篇
  1976年   22篇
  1974年   16篇
  1973年   12篇
排序方式: 共有2447条查询结果,搜索用时 15 毫秒
121.
Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.  相似文献   
122.
Immunomodulation of the tumor microenvironment is emerging as an important area of research for the treatment of cancer patients. Several synthetic and natural agents are being investigated for their ability to enhance the immunogenic responses of immune cells present in the tumor microenvironment to impede tumor cell growth and dissemination. Among them, resveratrol, a stilbenoid found in red grapes and many other natural sources, has been studied extensively. Importantly, resveratrol has been shown to possess activity against various human diseases, including cancer. Mechanistically, resveratrol has been shown to regulate an array of signaling pathways and processes involving oxidative stress, inflammation, apoptosis, and several anticancer effects. Furthermore, recent research suggests that resveratrol can regulate various cellular signaling events including immune cell regulation, cytokines/chemokines secretion, and the expression of several other immune-related genes. In this review, we have summarized recent findings on resveratrol’s effects on immune regulatory cells and associated signaling in various cancer types. Numerous immunomodulatory effects of resveratrol suggest it may be useful in combination with other cancer therapies including immunotherapy for effective cancer management.  相似文献   
123.
We report the existence of broad and weakly asymmetric features in the high-energy (G) Raman modes of freely suspended metallic carbon nanotubes of defined chiral index. A significant variation in peak width (from 12 cm(-1) to 110 cm(-1)) is observed as a function of the nanotube's chiral structure. When the nanotubes are electrostatically gated, the peak widths decrease. The broadness of the Raman features is understood as the consequence of coupling of the phonon to electron-hole pairs, the strength of which varies with the nanotube chiral index and the position of the Fermi energy.  相似文献   
124.
Slow light is demonstrated in liquid phase in an aqueous bacteriorhodopsin (bR) solution at room temperature. Group velocity as low as 3 m/s (all the way to c) is achieved by exploiting the photoisomerization property of bR for coherent population oscillations. Slow light in the liquid phase offers several advantages over solids or vapors for a variety of applications: (i) shorter lifetimes of the M state facilitate slow light at higher modulation frequencies, (ii) convection makes it possible to obtain large signal delays even at high input powers, and (iii) solution concentration is another convenient parameter to vary the signal delay over a wide range.  相似文献   
125.
126.
Carbene-based radicals are important for both fundamental and applied chemical research. Herein, extensive electrochemical investigations of nine different 1,2,3-triazolylidene selenium adducts are reported. It is found that the half-wave potentials of the first reduction of the selones correlate with their calculated LUMO levels and the LUMO levels of the corresponding triazolylidene-based mesoionic carbenes (MICs). Furthermore, unexpected quasi-reversibility of the reduction of two triazoline selones, exhibiting comparable reduction potentials, was discovered. Through UV/Vis/NIR and EPR spectroelectrochemical investigations supported by DFT calculations, the radical anion was unambiguously assigned to be triazoline centered. This electrochemical behavior was transferred to a triazolylidene-type MIC-gold phenyl complex resulting in a MIC-radical coordinated AuI species. Apart from UV-Vis-NIR and EPR spectroelectrochemical investigations of the reduction, the reduced gold-coordinated MIC radical complex was also formed in situ in the bulk through chemical reduction. This is the first report of a monodentate triazolylidene-based MIC ligand that can be reduced to its anion radical in a metal complex. The results presented here provide design principles for stabilizing radicals based on MICs.  相似文献   
127.
128.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   
129.
An NMR‐based approach for rapid characterization of translational diffusion of molecules has been developed. Unlike the conventional method of acquiring a series of 2D 13C and 1H spectra, the proposed approach involves a single 2D NMR spectrum, which can be acquired in minutes. Using this method, it was possible to detect the presence of intermediate oligomeric species of diphenylalanine in solution during the process of its self‐assembly to form nanotubular structures.  相似文献   
130.
A highly efficient oxidative carbocyclization–carbonylation reaction cascade of allenynes and enallenes has been developed using a PdII salt in low catalytic amounts under ambient temperature and pressure (1 atm of carbon monoxide). The use of DMSO as an additive was found to be important for an efficient reaction. A wide range of alcohols as trapping reagents were used to give the corresponding esters in good yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号