首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2152篇
  免费   33篇
  国内免费   16篇
化学   1428篇
晶体学   27篇
力学   45篇
数学   260篇
物理学   441篇
  2022年   21篇
  2021年   38篇
  2020年   49篇
  2019年   29篇
  2018年   18篇
  2017年   16篇
  2016年   37篇
  2015年   32篇
  2014年   25篇
  2013年   107篇
  2012年   73篇
  2011年   120篇
  2010年   79篇
  2009年   46篇
  2008年   93篇
  2007年   101篇
  2006年   98篇
  2005年   87篇
  2004年   86篇
  2003年   66篇
  2002年   71篇
  2001年   44篇
  2000年   43篇
  1999年   40篇
  1998年   18篇
  1997年   30篇
  1996年   40篇
  1995年   28篇
  1994年   24篇
  1993年   38篇
  1992年   15篇
  1991年   22篇
  1990年   29篇
  1989年   30篇
  1988年   22篇
  1987年   27篇
  1986年   21篇
  1985年   32篇
  1984年   37篇
  1983年   30篇
  1982年   31篇
  1981年   29篇
  1980年   28篇
  1979年   26篇
  1978年   22篇
  1977年   21篇
  1976年   20篇
  1975年   21篇
  1973年   17篇
  1972年   16篇
排序方式: 共有2201条查询结果,搜索用时 0 毫秒
61.
    
Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure‐induced disordering could require recognition of an order–disorder transition in solid‐state physics/chemistry and geophysics. Double perovskites Y2CoIrO6 and Y2CoRuO6 polymorphs synthesized at 0, 6, and 15 GPa show B‐site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long‐range ferrimagnetic ordering in the B‐site ordered samples are gradually overwhelmed by B‐site disorder. Theoretical calculations suggest that unusual unit‐cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6 and Y2CoRuO6.  相似文献   
62.
Although high-resolution Fourier transform ion cyclotron resonance mass spectrometry can resolve individual isotopic masses for biomolecules of more than 100 ku, its effective mass accuracy is limited by the distribution of naturally occurring rare isotopes (13C, 15N, 18O, 34S, etc.). In this article, we compare least-squares and maximum entropy methods for deconvolution of the isotopic natural abundance distribution to narrow the mass spectral isotopic abundance envelope for greatly enhanced effective mass resolution. We apply both methods to yield deconvolved high-resolution deuterium distributions for peptides and proteins subjected to H/D exchange prior to electrospray Fourier transform ion cyclotron resonance mass analysis. In addition, we show that even unresolved isotopic envelopes from a quadrupole mass spectrometer can be narrowed for considerably improved resolution there as well.  相似文献   
63.
64.
The reaction of cis-[Pt(15NH3)2(H2O) 2] 2+ (3) with N-acetylcysteine [H3accys] was investigated in aqueous solution. In this reaction, the ammine in the platinum complex formed was liberated. A mono-dentate sulfur-boundplatinum(II) product cis-[Pt(15NH3)2(H2O)(H2accys-S)]+ (7) and six-membered che-late ring complex cis-[Pt(15NH3)2 (Haccys-S,O)] (8) were formed in solution. The dinuclear sulfur-bridged complex 9, giving a broad peak in 15N NMR, was also observed, but only present in very tiny amounts. The mass spectrometry (ES-MS) was undertaken from this re action, and the product detected was only the dinuclear sulfur bridged platinum species and species related to it by ammine loss.  相似文献   
65.
A series of tetravalent An(IV) complexes with a bis-phenyl β-ketoiminate N,O donor ligand has been synthesized with the aim of identifying bonding trends and changes across the actinide series. The neutral molecules are homoleptic with the formula An((Ar)acnac)(4) (An = Th (1), U (2), Np (3), Pu (4); (Ar)acnac = ArNC(Ph)CHC(Ph)O; Ar = 3,5-(t)Bu(2)C(6)H(3)) and were synthesized through salt metathesis reactions with actinide chloride precursors. NMR and electronic absorption spectroscopy confirm the purity of all four new compounds and demonstrate stability in both solution and the solid state. The Th, U, and Pu complexes were structurally elucidated by single-crystal X-ray diffraction and shown to be isostructural in space group C2/c. Analysis of the bond lengths reveals shortening of the An-O and An-N distances arising from the actinide contraction upon moving from 1 to 2. The shortening is more pronounced upon moving from 2 to 4, and the steric constraints of the tetrakis complexes appear to prevent the enhanced U-O versus Pu-O orbital interactions previously observed in the comparison of UI(2)((Ar)acnac)(2) and PuI(2)((Ar)acnac)(2) bis-complexes. Computational analysis of models for 1, 2, and 4 (1a, 2a, and 4a, respectively) concludes that both the An-O and the An-N bonds are predominantly ionic for all three molecules, with the An-O bonds being slightly more covalent. Molecular orbital energy level diagrams indicate the largest 5f-ligand orbital mixing for 4a (Pu), but spatial overlap considerations do not lead to the conclusion that this implies significantly greater covalency in the Pu-ligand bonding. QTAIM bond critical point data suggest that both U-O/U-N and Pu-O/Pu-N are marginally more covalent than the Th analogues.  相似文献   
66.
The electron impact mass spectra of the acetates of zinc, magnesium, cobalt and manganese have been investigated using a direct inlet probe. Volatile tetrahedral complexes are produced on heating, and ions of the form [M4(OCOCH3)6O] (M = Co and Mn) and [N4(OCOCH3)5O]+ (N = Zn or Mg) are observed. A mixture of magnesium and cobalt acetates produces ions of the form [MgnCo4–n(OCOCH3)6O].  相似文献   
67.
Reverse iodine transfer polymerisation (RITP) is a living radical polymerisation technique that has shown to be feasible in synthesising segmented styrene-acrylate copolymers. Polymers synthesised via RITP are typically only described regarding their bulk properties using nuclear magnetic resonance spectroscopy and size exclusion chromatography. To fully understand the complex composition of the polymerisation products and the RITP reaction mechanism, however, it is necessary to use a combination of advanced analytical methods. In the present RITP procedure, polystyrene was synthesised first and then used as a macroinitiator to synthesise polystyrene-block-poly(n-butyl acrylate) (PS-b-PBA) block copolymers. For the first time, these PS-b-PBA block copolymers were analysed by a combination of SEC, in situ1H NMR and HPLC. 1H NMR was used to determine the copolymer composition and the end group functionality of the samples, while SEC and HPLC were used to confirm the formation of block copolymers. Detailed information on the living character of the RITP process was obtained.  相似文献   
68.
69.
Mass analysis of proteolytic fragment peptides following hydrogen/deuterium exchange offers a general measure of solvent accessibility/hydrogen bonding (and thus conformation) of solution-phase proteins and their complexes. The primary problem in such mass analyses is reliable and rapid assignment of mass spectral peaks to the correct charge state and degree of deuteration of each fragment peptide, in the presence of substantial overlap between isotopic distributions of target peptides, autolysis products, and other interferant species. Here, we show that at sufficiently high mass resolving power (m/Δm50% ≥ 100,000), it becomes possible to resolve enough of those overlaps so that automated data reduction becomes possible, based on the actual elemental composition of each peptide without the need to deconvolve isotopic distributions. We demonstrate automated, rapid, reliable assignment of peptide masses from H/D exchange experiments, based on electrospray ionization FT-ICR mass spectra from H/D exchange of solution-phase myoglobin. Combined with previously demonstrated automated data acquisition for such experiments, the present data reduction algorithm enhances automation (and thus expands generality and applicability) for high-resolution mass spectrometry-based analysis of H/D exchange of solution-phase proteins.  相似文献   
70.
The mechanisms of pyridoxal 5'-phosphate (PLP)-dependent enzymes require substrates to form covalent "external aldimine" intermediates, which absorb light strongly between 410 and 430 nm. Aspartate aminotransferase (AAT) is a prototypical PLP-dependent enzyme that catalyzes the reversible interconversion of aspartate and α-ketoglutarate with oxalacetate and glutamate. From kinetic isotope effects studies, it is known that deprotonation of the aspartate external aldimine C(α)-H bond to give a carbanionic quinonoid intermediate is partially rate limiting in the thermal AAT reaction. We show that excitation of the 430-nm external aldimine absorption band increases the steady-state catalytic activity of AAT, which is attributed to the photoenhancement of C(α)-H deprotonation on the basis of studies with Schiff bases in solution. Blue light (250 mW) illumination gives an observed 2.3-fold rate enhancement for WT AAT activity, a 530-fold enhancement for the inactive K258A mutant, and a 58600-fold enhancement for the PLP-Asp Schiff base in water. These different levels of enhancement correlate with the intrinsic reactivities of the C(α)-H bond in the different environments, with the less reactive Schiff bases exhibiting greater enhancement. Time-resolved spectroscopy, ranging from femtoseconds to minutes, was used to investigate the nature of the photoactivation of C(α)-H bond cleavage in PLP-amino acid Schiff bases both in water and bound to AAT. Unlike the thermal pathway, the photoactivation pathway involves a triplet state with a C(α)-H pK(a) that is estimated to be between 11 and 19 units lower than the ground state for the PLP-Val Schiff base in water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号