首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   2篇
  国内免费   1篇
化学   267篇
晶体学   1篇
数学   2篇
物理学   22篇
  2022年   4篇
  2021年   6篇
  2020年   11篇
  2019年   10篇
  2018年   1篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   22篇
  2011年   20篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   24篇
  2006年   27篇
  2005年   25篇
  2004年   29篇
  2003年   13篇
  2002年   21篇
  2001年   6篇
  2000年   8篇
  1999年   2篇
  1998年   1篇
  1996年   3篇
  1995年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1974年   1篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
101.
This article presents the synthesis of gold nanoparticles in a single-phase supercritical fluid carbon dioxide solvent. The gold nanoparticles were formed by the reduction of triphenylphosphine gold(I) perfluorooctanoate with dimethylamineborane. Transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy reveal the formation of gold nanoparticles of 1 nm in diameter. A high dispersion stability of the gold nanoparticles in supercritical carbon dioxide can be obtained by binding both triphenylphosphine and fluorocarbon ligands on the surface of the gold nanoparticles.  相似文献   
102.
    
Novel highly active electrocatalysts for hydrazine hydrate fuel cell application were developed, synthesized and integrated into an operation vehicle prototype. The materials show in both rotating disc electrode (RDE) and membrane electrode assembly (MEA) tests the world highest activity with peak current density of 16 000 A g?1 (RDE) and 450 mW cm?2 operated in air (MEA).  相似文献   
103.
    
Motion tracking of microorganisms is useful to investigate the effects of chemical or physical stimulation on their biological functions. Herein, we describe a novel electrochemical imaging method for motion tracking of microorganisms using a large-scale integration (LSI)-based amperometric device. The device consists of 400 electrochemical sensors with a pitch of 250 μm. A convection flow caused by the motion of microorganisms supplies redox species to the sensors and increases their electrochemical responses. Thus, the flow is converted to electrochemical signals, enabling the electrochemical motion tracking of the microorganisms. As a proof of concept, capillary vibration was monitored. Finally, the method was applied to monitoring the motion of Daphnia magna. The motions of these microorganisms were clearly tracked based on the electrochemical oxidation of [Fe(CN)6]4− and reduction of O2.  相似文献   
104.
The purpose of this study was to develop a new technique for a powerful compact MR elastography (MRE) actuator based on a pneumatic ball-vibrator. This is a compact actuator that generates powerful centrifugal force vibrations via high speed revolutions of an internal ball using compressed air. This equipment is easy to handle due to its simple principles and structure. Vibration frequency and centrifugal force are freely adjustable via air pressure changes (air flow volume), and replacement of the internal ball. In order to achieve MRI compatibility, all parts were constructed from non-ferromagnetic materials. Vibration amplitudes (displacements) were measured optically by a laser displacement sensor. From a bench test of displacement, even though the vibration frequency increased, the amount of displacement did not decrease. An essential step in MRE is the generation of mechanical waves within tissue via an actuator, and MRE sequences are synchronized to several phase offsets of vibration. In this system, the phase offset was detected by a four-channel optical-fiber sensor, and it was used as an MRI trigger signal. In an agarose gel phantom experiment, this actuator was used to make an MR elastogram. This study shows that the use of a ball actuator for MRE is feasible.  相似文献   
105.
A novel heterogemini surfactant comprising two hydrocarbon chains and two different hydrophilic groups such as a quaternary ammonium cation and gluconamide nonion N,N-dimethyl-N-[2-(N'-alkyl-N'-gluconamide)ethyl]-1-alkylammonium bromides (2CnAmGlu, where n represents hydrocarbon chain lengths of 8, 10, 12, and 14) was synthesized by reacting N,N-dimethylethylenediamine with alkyl bromide, followed by a reaction with 1,5-D(+)-gluconolactone. The adsorption properties of 2CnAmGlu were characterized by surface tension measurements made using the Wilhelmy plate method, and their aggregation properties were investigated by dynamic light scattering and cryogenic transmission electron microscopy techniques. The relationship between the hydrocarbon chain length and the logarithm of the critical micelle concentration (cmc) for 2CnAmGlu exhibited a linear decrease when the chain length was increased up to 12 and then a departure from linearity at n=14. The surface tension reached 24-26 mN m-1 at each cmc, indicating high efficiency in lowering the surface tension of water. Furthermore, it was found that the structure of the aggregate formed for 2CnAmGlu in solution was influenced by the hydrocarbon chain length; that is, for n=10 and 12, micelles with a hydrodynamic radius of 2-5 nm were formed, whereas vesicles were also observed for n=14.  相似文献   
106.
Nanometer-sized gold particles with varying mean size from 3.2 to 12.2 nm were loaded on the surfaces of TiO2 particles in a highly dispersed state with the loading amount maintained constant (0.46 +/- 0.02 mass %) using the deposition-precipitation method. Light irradiation (lambda(ex) > 300 nm) to a deaerated ethanol TiO2 particle suspension containing elemental sulfur (S8) led to the energetically uphill reduction of S8 to H2S. It has been found that this reaction is dramatically enhanced with such a low level of Au loading on TiO2 and that the zero-order rate constant of reaction increases with decreasing mean size of Au nanoparticles (d). The effects of reaction parameters (substrate concentration, light intensity, temperature) on the rate of reaction were studied to infer the essential reaction mechanism. Further, a kinetic analysis has led to a conclusion that the increase in the rate of reaction with decreasing d results from the improvement of the charge separation efficiency.  相似文献   
107.
Various types of chiral host molecules 2-7 based on a phenolphthalein skeleton and two crown ethers were prepared for use in visual enantiomeric recognition, and we examined their enantioselective coloration in complexation with chiral amino acid derivatives 9-22 in methanol solution. Methyl-substituted host (S,S,S,S)-3 showed particularly prominent enantiomer selectivity for the alanine amide derivatives 11 and 12. A combination of methyl-substituted host (S,S,S,S)-3 with guest (R)-11 or (R)-12 developed a purple color, whereas no color development was observed with (S)-11 or (S)-12. On the other hand, phenyl-substituted host (S,S,S,S)-6 showed deeper coloration with a wide range of (S)-beta-amino alcohols compared to that seen with host (S,S,S,S)-6 and the corresponding (R)-beta-amino alcohols at 0 degrees C. Furthermore, absorbance inversion temperatures (AIT) were observed within the range of 0-50 degrees C in many cases.  相似文献   
108.
[reactions: see text] The novel and stereocontrolled synthesis of (+/-)-tetrodotoxin from myo-inositol is described. The key steps involve the stepwise oxidation of hydroxyl groups to the carbonyl function, followed by the addition of specific nucleophiles, including the successive spiro alpha-chloroepoxide formation and its ring-opening with the azide anion, to give the desired branched chain structures (5-->6, 17-->18-->19-->20 and 23-->24-->25) with the desired regio- and stereoselectivities in high yields. The stepwise conversion of the alpha-azido aldehyde 25 to the delta-lactone 29, followed by reduction of the azide, introduction of a guanidine moiety, aldehyde formation, and deprotection, produced the (+/-)-tetrodotoxin.  相似文献   
109.
In the present study, we prepared solid dispersions of the poorly water-soluble drug nitrendipine (NIT) using the twin screw extruder method with high-molecular-weight substances, hydroxypropylmethylcellulosephthalate (HPMCP) and Carbopol (CAR), as carriers. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) evaluation showed that solid dispersions can be formed when NIT-HPMCP and NIT-CAR mixtures are treated with the twin screw extruder method. Fourier Transformation IR Spectroscopy (FT-IR) obtained with NIT-HPMCP and NIT-CAR solid dispersions indicated the presence of hydrogen bonding between the drug and the carriers. NIT-CAR solid dispersions were found to give somewhat higher dissolution than crystalline NIT and physical mixtures, while the dissolution of NIT-HPMCP solid dispersions was markedly decreased compared with the crystalline NIT and physical mixtures. These findings indicated that CAR has a greater ability to improve the dissolution of NIT than HPMCP when a twin screw extruder was employed to prepare the solid dispersions. The twin screw extruder method can be used as a simple and effective method for the preparation of solid dispersions to improve the dissolution properties of poorly water-soluble drugs when choosing proper polymers as carriers.  相似文献   
110.
Hydrogen bonding effects on surface structure, photophysical properties, and photoelectrochemistry have been examined in a mixed film of porphyrin and fullerene composites with and without hydrogen bonding on indium tin oxide and nanostructured SnO2 electrodes. The nanostructured SnO2 electrodes modified with the mixed films of porphyrin and fullerene composites with hydrogen bonding exhibited efficient photocurrent generation compared to the reference systems without hydrogen bonding. Atomic force microscopy, infrared reflection absorption, and ultraviolet-visible absorption spectroscopies and time-resolved fluorescence lifetime and transient absorption spectroscopic measurements disclosed the relationship between the surface structure and photophysical and photoelectrochemical properties relating to the formation of hydrogen bonding between the porphyrins and/or the C60 moieties in the films on the electrode surface. These results show that hydrogen bonding is a highly promising methodology for the fabrication of donor and acceptor composites on nanostructured semiconducting electrodes, which exhibit high photoelectrochemical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号