首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   2篇
化学   111篇
晶体学   2篇
力学   5篇
数学   1篇
物理学   34篇
  2022年   1篇
  2021年   3篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2012年   11篇
  2011年   10篇
  2010年   2篇
  2009年   5篇
  2008年   10篇
  2007年   7篇
  2006年   17篇
  2005年   16篇
  2004年   18篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1974年   1篇
  1972年   1篇
排序方式: 共有153条查询结果,搜索用时 31 毫秒
91.
92.
This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas–liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 m to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 m at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 m in thickness in the slug and annular flow regimes.  相似文献   
93.
94.
In an effort toward determining the feasibility of single molecule analysis, we describe a case whereby the binding of one biotinylated DNA to one streptavidin molecule via electrostatic interactions was controlled by altering in pH 4.0-9.0 and 0.16 of the ion strength. The quantitative analysis of immobilized probe ssDNA was realized in real-time via a quartz crystal microbalance (QCM) and electrochemical (EC) measurement in the range 100 pM to 50 μM of probe oligonucleotide concentration. The variation amount of biotinylated ssDNA immobilized on the streptavidin-modified surface at pH 7.5 was about 0.16 pmol, giving a ratio of streptavidin to biotinylated ssDNA of about 1:1.1. On the other hand, at pH 4.9, it was immobilized about 0.29 pmol. From the shape of the Langmuir plot and QCM, the immobilization efficiency of biotinylated DNA via streptavidin at pH 4.9 was approximately twofold that at pH 7.5. In view points of the reaction velocity, it was increased with decreasing buffer solution pH, indicating a strong interaction of negatively charged probe DNA with the positively charged streptavidin. And also the EC response value of ΔI/Istreptavidin for the immobilized biotinylated ssDNA in pH 4.9 was about 49%, while the corresponding value for the pH 7.5 was approximately 34%. As DNA molecules possess negative charges, electrostatic repulsion occurred between streptavidin and biotinylated ssDNA at pH 7.5. At pH 4.9, the attraction between the biotinylated ssDNA and streptavidin resulted in increased adsorption which has an isoelectric point of about 5.9. It was deduced that the binding of biotinylated ssDNA to one or two of the four binding sites of streptavidin can be controlled by adjusting the pH-controlled electrostatic interaction.  相似文献   
95.
Accurate measurements of the interfacial wave structure of upward annular two-phase flow in a vertical pipe were performed using a laser focus displacement meter (LFD). The purpose of this study was to clarify the effectiveness of the LFD for obtaining detailed information on the interfacial displacement of a liquid film in annular two-phase flow and to investigate the effect of axial distance from the air–water inlet on the phenomena. Adiabatic upward annular air–water flow experiments were conducted using a 3 m long, 11 mm ID pipe. Measurements of interfacial waves were conducted at 21 axial locations, spaced 110 mm apart in the pipe. The axial distances from the inlet (z) normalized by the pipe diameter (D) varied over z/D = 50–250. Data were collected for predetermined gas and liquid flow conditions and for Reynolds numbers ranging from ReG = 31,800 to 98,300 for the gas phase and ReL = 1050 to 9430 for the liquid phase. Using the LFD, we obtained such local properties as the minimum thickness, maximum thickness, and passing frequency of the waves. The maximum film thickness and passing frequency of disturbance waves decreased gradually, with some oscillations, as flow developed. The flow development, i.e., decreasing film thickness and passing frequency, persisted until the end of the pipe, which means that the flow might never reach the fully developed state. The minimum film thickness decreased with flow development and with increasing gas flow rate. These results are discussed, taking into account the buffer layer calculated from Karman’s three-layer model. A correlation is proposed between the minimum film thickness obtained in relation to the interfacial shear stress and the Reynolds number of the liquid.  相似文献   
96.
97.
The crystal structure of octaguanidinium α‐silicodiplatino­decatungstate hexahydrate, (CH6N3)8[α‐SiPt2W10O40]·6H2O, has been analyzed via a high‐energy X‐ray diffraction experiment at the SPring‐8 BL04B2 beamline. The title compound contains a novel α‐Keggin heteropolyanion in which two of the addenda atoms are replaced by Pt atoms. W and Pt atoms occupy the same coordinates; the occupancy fractions are (W) and (Pt), and the α‐Keggin anion has symmetry. The two types of W(Pt)—W(Pt) distance are in the ranges 3.3565 (4)–3.3704 (4) and 3.7033 (4)–3.7100 (4) Å, the four types of W(Pt)—O bond length are in the ranges 1.721 (5)–1.725 (5), 1.910 (5)–1.932 (5), 1.934 (5)–1.956 (5) and 2.339 (4)–2.348 (4) Å, and the Si—O bond length is 1.646 (4) Å.  相似文献   
98.
π-Conjugated trinuclear iridium and cobalt dithiolenes undergo multiple metal-metal bond formation with Co(2)(CO)(8) and Fe(CO)(5), giving rise to Ir(3)Co(6) nonanuclear and Co(3)Fe(3) hexanuclear cluster complexes 5 and 6, respectively. 5 retains a planar framework and intense π conjugation across the three iridadithiolenes and the phenylene bridge, which results in intense electronic communication among the three Co(2)(CO)(5) units in reduced mixed-valent states.  相似文献   
99.
We report on the development of a microfluidic system for the electrical detection of single pollen allergen particles. Our device consists of 500 nm electrode gaps fabricated in an 800 nm wide fluidic channel. We flowed pollen allergen particles of average size 330 nm along the channel via fluid pumping and simultaneously monitored temporal change in dc current flowing through the sensing electrodes. Current spikes were detected, which can be attributed to a capacitance discharging upon trapping/detrapping of single allergens in the electrode gap. This sensing mechanism may open new avenues for a highly sensitive pollen allergen sensor.  相似文献   
100.
A free‐radical‐polymerizable SSQ/PEG blend with direct patternability has been proposed as an ideal nonfouling material for nanostructure‐based biomedical applications. Cured SSQ/PEG networks show an UV transparency of >90% at 365 nm, high resistance to organic/aqueous solutions, hydrophilicity and Young's moduli of 1.898–2.815 GPa. SSQ/PEG patterns with 25‐nm linewidths, 25‐nm spacing, and an aspect ratio of 4:1 were directly fabricated on transparent substrates by UV embossing, and cured SSQ/PEG networks with long‐term stability under chemical, thermal, and biological stress showed strong resistance to the nonspecific adsorption of biomolecules. These characteristics may offer a new strategy for the development of a number of medical nanodevice applications such as labs‐on‐a‐chip.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号