首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101728篇
  免费   4156篇
  国内免费   3129篇
化学   41141篇
晶体学   1072篇
力学   8075篇
综合类   254篇
数学   34410篇
物理学   24061篇
  2024年   89篇
  2023年   545篇
  2022年   909篇
  2021年   953篇
  2020年   1063篇
  2019年   989篇
  2018年   11037篇
  2017年   10837篇
  2016年   7108篇
  2015年   1921篇
  2014年   1653篇
  2013年   2023篇
  2012年   5885篇
  2011年   12508篇
  2010年   7002篇
  2009年   7337篇
  2008年   8029篇
  2007年   10041篇
  2006年   1549篇
  2005年   2366篇
  2004年   2366篇
  2003年   2661篇
  2002年   1607篇
  2001年   755篇
  2000年   799篇
  1999年   739篇
  1998年   674篇
  1997年   571篇
  1996年   629篇
  1995年   501篇
  1994年   433篇
  1993年   417篇
  1992年   323篇
  1991年   291篇
  1990年   285篇
  1989年   217篇
  1988年   177篇
  1987年   141篇
  1986年   154篇
  1985年   112篇
  1984年   79篇
  1983年   76篇
  1982年   78篇
  1981年   59篇
  1980年   54篇
  1979年   50篇
  1914年   45篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Native water-soluble enzymes were transformed into interface-binding enzymes via conjugation with hydrophobic polymers, thus enabling interesting interfacial biocatalysis between immiscible chemicals at oil/water interfaces. Such interfacial biocatalysis demonstrated a significantly improved catalytic efficiency as compared to traditional biphasic reactions with enzymes contained in the bulk aqueous phase. Particularly, polystyrene-conjugated beta-galactosidase showed a catalytic efficiency that was more than 145 times higher than that of the native enzyme for a transgalactosylation reaction. It is believed that the improved accessibility of the biocatalysts to chemicals held in both phases across the interface is the key driver for the enhancement of enzyme activity.  相似文献   
62.
Precision medicine has been strongly promoted in recent years. It is used in clinical management for classifying diseases at the molecular level and for selecting the most appropriate drugs or treatments to maximize efficacy and minimize adverse effects. In precision medicine, an in-depth molecular understanding of diseases is of great importance. Therefore, in the last few years, much attention has been given to translating data generated at the molecular level into clinically relevant information. However, current developments in this field lack orderly implementation. For example, high-quality chemical research is not well integrated into clinical practice, especially in the early phase, leading to a lack of understanding in the clinic of the chemistry underlying diseases. In recent years, mass spectrometry (MS) has enabled significant innovations and advances in chemical research. As reported, this technique has shown promise in chemical mapping and profiling for answering “what”, “where”, “how many” and “whose” chemicals underlie the clinical phenotypes, which are assessed by biochemical profiling, MS imaging, molecular targeting and probing, biomarker grading disease classification, etc. These features can potentially enhance the precision of disease diagnosis, monitoring and treatment and thus further transform medicine. For instance, comprehensive MS-based biochemical profiling of ovarian tumors was performed, and the results revealed a number of molecular insights into the pathways and processes that drive ovarian cancer biology and the ways that these pathways are altered in correspondence with clinical phenotypes. Another study demonstrated that quantitative biomarker mapping can be predictive of responses to immunotherapy and of survival in the supposedly homogeneous group of breast cancer patients, allowing for stratification of patients. In this context, our article attempts to provide an overview of MS-based chemical mapping and profiling, and a perspective on their clinical utility to improve the molecular understanding of diseases for advancing precision medicine.

An overview of MS-based chemical mapping and profiling, indicating its contributions to the molecular understanding of diseases in precision medicine by answering "what", "where", "how many" and "whose” chemicals underlying clinical phenotypes.  相似文献   
63.
Ag2S nanoparticles in hyperbranched polyurethane matrix were prepared through the in situ reaction with thioacetamide as the sulfur source at room temperature. Transmission electron microscopic analysis revealed a uniform spherical shape for Ag2S nanoparticles, with an average size of about 4-10 nm and a narrow size distribution. X-ray powder diffraction and UV-vis spectroscopy were also used to characterize the obtained nanoparticles  相似文献   
64.
A novel dinuclear nickel(II) complex, [Ni2(MOBPT)2Cl2(H2O)2]Cl2 · 7H2O (MOBPT = 4-(p-methoxyphenyl) −3,5-bis(pyridine-2-yl)-1,2,4-triazole), has been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction methods. The crystal structure determination shows that the dinuclear Ni2N8 unit is almost planer in which each NiII ion is coordinated by four nitrogen atoms from MOBPT equatorially and a water molecule and a chloride ion axially in a distorted octahedral geometry. Magnetic measurements reveal a relatively weak antiferromagnetic exchange in the complex.  相似文献   
65.
High-voltage capillary zone electrophoresis of red blood cells   总被引:3,自引:0,他引:3  
The high-voltage wide-bore capillary zone electrophoresis of red blood cells was investigated. The reproducibility of the retention time (electrophoretic mobility) is excellent and the differentiation among various species is good. The peaks in the electropherogram describe the distribution of the size and/or surface charge of the cells and are therefore broad. The relationship between the peak height and the number of cells injected is good, with linear correlation coefficients better than 0.98. Details of the preparation of cell suspensions and support electrolytes are given, which is essential for obtaining reproducible results. The inner surface of FEP capillary tubing is degraded by the application of high voltage and a pause is necessary between successive experiments if good and reproducible peak shapes are to be obtained. The length of the pause increases with the number of experiments made, and finally the tubing becomes useless. Inspection of the inner surface by X-ray photoelectron spectroscopy showed the breakdown of CHF bonds, but the actual mechanism is not known.  相似文献   
66.
Highly porous nanocomposites of zirconium dioxide and silicate are synthesised in an aqueous system from an inorganic salt of zirconium; the nanacomposites, with tailorable pore structures, exhibit superior performance as catalyst supports.  相似文献   
67.
The ground state geometric, electronic structure and Raman spectra of 5,15-diphenylporphine (H(2)DPP) have been studied using B3LYP/6-31G(d) method and compared with that of well-studied free base porphine (H(2)P) and meso-tetraphenylporphine (H(2)TPP). Calculation shows that 5,15-substitution causes remarkable in-plane distortion, whereas the resulting out-of-plane distortion is negligible. The calculated electronic structure of H(2)DPP is consistent with the absorption spectra compared with H(2)P and H(2)TPP. The calculated vibrational frequencies of H(2)DPP scaled with a single factor of 0.971 agree well with experimental data (the rms error is 8.0 cm(-1)). The assignment of experimental Raman bands of H(2)DPP was discussed on the basis of theoretical calculation and the comparison with that of H(2)P and H(2)TPP. The splitting of some vibrational modes involving the motion of C(m) atom, such as nu(1), nu(8), and nu(10), was observed and was attributed to the diversification of the environment around C(m) atoms. As the shift of absorption peaks, the shift of some structure-sensitive Raman bands of H(2)DPP form that of H(2)TPP and H(2)P was attributed to the in-plane nuclear reorganization (IPNR) induced by phenyl-substitution, though the contribution of nonplanarity mechanism could not be excluded completely.  相似文献   
68.
The combination of in situ X-ray photoelectron spectroscopy, infrared reflection spectroscopy, atomic force microscopy, and time-of-flight secondary ion mass spectrometry are used to probe the nature of the evolving interface chemistry and metal morphology arising from Ti vapor deposition onto the surface of a CH(3)(CH(2))(15)S/Au{111} self-assembled monolayer (SAM) at ambient temperature. The results show that for a deposition rate of approximately 0.15 Ti atom.nm(-2).s(-1) a highly nonuniform Ti overlayer is produced via a process in which a large fraction of impinging Ti atoms do not stick to the bare SAM surface. The adsorbed atoms form isolated Ti clusters and react with CH(3) groups to form carbide products at the cluster-SAM interfaces. Further growth of Ti clusters appears to be concentrated at these scattered reaction centers. The SAM molecules in the local vicinity are subsequently degraded to inorganic products, progressing deeper into the monolayer as the deposition proceeds to give an inorganic/organic nanocomposite. A continuous overlayer does not form until metal coverage approaches approximately 50 Ti atoms per SAM molecule. These data indicate that for applications such as molecular device contacts the use of Ti may be highly problematic, suffering from both a highly nonuniform contact area and the presence of extensive inorganic products such as nonstoichiometric carbides and hydrides.  相似文献   
69.
Reactions of salicylaldehydes with boronate ester derivatives of aniline have been examined. Addition of these Schiff base ligands to palladium acetate or Na2PdCl4 afforded novel boron-containing trans-bis(N-arylsalicylaldiminato) palladium complexes.Condensation of salicylaldehyde (2-HOC6H4C(O)H) with H2NC6H4Bpin (pin=1,2-O2C2Me4) afforded the boron-containing Schiff bases, 2-HOC6H4C(H)=NC6H4Bpin (1–3a). Similar reactivity with 2-hydroxy-5-nitrobenzaldehyde and 2-hydroxy-1-naphthaldehyde gave the corresponding Schiff bases (1-3b) and (1-3c), respectively. Reaction of Schiff bases (2) and (3) with palladium acetate or Na2PdCl4 afforded complexes of the type PdL2 (4,5), where L=deprotonated Schiff base. The molecular structure of the nitro-salicylaldehyde 4-Bpin palladium complex (5b) was characterized by an X-ray diffraction study. All new palladium compounds have been characterized fully and tested for their antifungal activity against Aspergillus niger and Aspergillus flavus.  相似文献   
70.
An electrospray ionization (ESI) ambient pressure ion-mobility spectrometer (APIMS) interfaced to an orthogonal reflector time-of-flight mass spectrometer (TOFMS) was evaluated for the first time as a detector for the identification of phenylthiohydantoin (PTH)-derivatized amino acids, the final products in the Edman sequencing process of peptides and proteins. The drift and flight times of the twenty common PTH amino acids were characterized by a well-defined 2-D mobility/mass spectral pattern. The combination of mobility/mass modes of analysis gave rise to a unique trend-line formation for the series of PTH amino acids. In addition, each PTH amino acid had a unique reduced mobility constant K(o), thus enabling the differentiation of all the amino acid derivatives including the PTH-leucine and PTH-isoleucine isomers. More importantly it was shown that it was possible to resolve a complete reference mixture of PTH amino acids in a single experimental run in less than 1 min. Detection limits for the PTH amino acids were found to range from 1.04 to 3.52 ng; indicating that the limits of detection were less than 17.0 pmol for all of the PTH amino acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号