首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1621篇
  免费   91篇
  国内免费   11篇
化学   965篇
晶体学   8篇
力学   46篇
数学   410篇
物理学   294篇
  2024年   6篇
  2023年   25篇
  2022年   37篇
  2021年   33篇
  2020年   45篇
  2019年   47篇
  2018年   33篇
  2017年   24篇
  2016年   77篇
  2015年   73篇
  2014年   71篇
  2013年   113篇
  2012年   122篇
  2011年   156篇
  2010年   95篇
  2009年   56篇
  2008年   98篇
  2007年   88篇
  2006年   81篇
  2005年   70篇
  2004年   68篇
  2003年   54篇
  2002年   42篇
  2001年   18篇
  2000年   12篇
  1999年   10篇
  1998年   10篇
  1997年   12篇
  1996年   17篇
  1995年   22篇
  1994年   12篇
  1993年   5篇
  1992年   13篇
  1991年   4篇
  1990年   12篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   9篇
  1984年   4篇
  1982年   9篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1970年   3篇
  1968年   3篇
  1932年   1篇
  1921年   1篇
排序方式: 共有1723条查询结果,搜索用时 15 毫秒
121.
In the last decade, substantial research in the field of post‐plasma grafting surface modification has focussed on the introduction of carboxylic acids on surfaces by grafting acrylic acid (AAc). In the present work, we report on an alternative approach for biomaterial surface functionalisation. Thin poly‐ε‐caprolactone (PCL) films were subjected to a dielectric barrier discharge Ar‐plasma followed by the grafting of 2‐aminoethyl methacrylate (AEMA) under UV‐irradiation. X‐ray photoelectron spectroscopy (XPS) confirmed the presence of nitrogen. The ninhydrin assay demonstrated, both quantitatively and qualitatively, the presence of free amines on the surface. Confocal fluorescence microscopy (CFM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to visualise the grafted surfaces, indicating the presence of pAEMA. Static contact angle (SCA) measurements indicated a permanent increase in hydrophilicity. Furthermore, the AEMA grafted surfaces were applied for comparing the physisorption and covalent immobilisation of gelatin. CFM demonstrated that only the covalent immobilisation lead to a complete coverage of the surface. Those gelatin‐coated surfaces obtained were further coated using fibronectin. Osteosarcoma cells demonstrated better cell‐adhesion and cell‐viability on the modified surfaces, compared to the pure PCL films.

  相似文献   

122.
Proton nuclear magnetic resonance (1H-NMR)-based metabolomics enables the high-resolution and high-throughput assessment of a broad spectrum of metabolites in biofluids. Despite the straightforward character of the experimental methodology, the analysis of spectral profiles is rather complex, particularly due to the requirement of numerous data preprocessing steps. Here, we evaluate how several of the most common preprocessing procedures affect the subsequent univariate analyses of blood serum spectra, with a particular focus on how the standard methods perform compared to more advanced examples. Carr–Purcell–Meiboom–Gill 1D 1H spectra were obtained for 240 serum samples from healthy subjects of the Asklepios study. We studied the impact of different preprocessing steps—integral (standard method) and probabilistic quotient normalization; no, equidistant (standard), and adaptive-intelligent binning; mean (standard) and maximum bin intensity data summation—on the resonance intensities of three different types of metabolites: triglycerides, glucose, and creatinine. The effects were evaluated by correlating the differently preprocessed NMR data with the independently measured metabolite concentrations. The analyses revealed that the standard methods performed inferiorly and that a combination of probabilistic quotient normalization after adaptive-intelligent binning and maximum intensity variable definition yielded the best overall results (triglycerides, R = 0.98; glucose, R = 0.76; creatinine, R = 0.70). Therefore, at least in the case of serum metabolomics, these or equivalent methods should be preferred above the standard preprocessing methods, particularly for univariate analyses. Additional optimization of the normalization procedure might further improve the analyses.  相似文献   
123.
We present a computational approach to protein‐protein docking based on surface shape complementarity (“ProBinder”). Within this docking approach, we implemented a new surface decomposition method that considers local shape features on the protein surface. This new surface shape decomposition results in a deterministic representation of curvature features on the protein surface, such as “knobs,” “holes,” and “flats” together with their point normals. For the actual docking procedure, we used geometric hashing, which allows for the rapid, translation‐, and rotation‐free comparison of point coordinates. Candidate solutions were scored based on knowledge‐based potentials and steric criteria. The potentials included electrostatic complementarity, desolvation energy, amino acid contact preferences, and a van‐der‐Waals potential. We applied ProBinder to a diverse test set of 68 bound and 30 unbound test cases compiled from the Dockground database. Sixty‐four percent of the protein‐protein test complexes were ranked with an root mean square deviation (RMSD) < 5 Å to the target solution among the top 10 predictions for the bound data set. In 82% of the unbound samples, docking poses were ranked within the top ten solutions with an RMSD < 10 Å to the target solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
124.
Sound source localization algorithms determine the physical position of a sound source in respect to a listener. For practical applications, a localization algorithm design has to take into account real world conditions like multiple active sources, reverberation, and noise. The application can impose additional constraints on the algorithm, e.g., a requirement for low latency. This work defines the most important constraints for practical applications, introduces an algorithm, which tries to fulfill all requirements as good as possible, and compares it to state-of-the-art sound source localization approaches.  相似文献   
125.
126.
In order to meet the potential need for emergency large-scale retrospective radiation biodosimetry following an accident or attack, we have developed instrumentation and methodology for in vivo electron paramagnetic resonance spectroscopy to quantify concentrations of radiation-induced radicals within intact teeth. This technique has several very desirable characteristics for triage, including independence from confounding biologic factors, a non-invasive measurement procedure, the capability to make measurements at any time after the event, suitability for use by non-expert operators at the site of an event, and the ability to provide immediate estimates of individual doses. Throughout development there has been a particular focus on the need for a deployable system, including instrumental requirements for transport and field use, the need for high throughput, and use by minimally trained operators.Numerous measurements have been performed using this system in clinical and other non-laboratory settings, including in vivo measurements with unexposed populations as well as patients undergoing radiation therapies. The collection and analyses of sets of three serially-acquired spectra with independent placements of the resonator, in a data collection process lasting approximately five minutes, provides dose estimates with standard errors of prediction of approximately 1 Gy. As an example, measurements were performed on incisor teeth of subjects who had either received no irradiation or 2 Gy total body irradiation for prior bone marrow transplantation; this exercise provided a direct and challenging test of our capability to identify subjects who would be in need of acute medical care.  相似文献   
127.
Nanotechnology has great potential to transform science and industry in the fields of energy, material, environment, and medicine. At the same time, more concerns are being raised about the occupational health and safety of nanomaterials in the workplace and the implications of nanotechnology on the environment and living systems. Studies on environmental, health, and safety (EHS) issues of nanomaterials have a strong influence on public acceptance of nanotechnology and, eventually, affect its sustainability. Oversight and regulation by government agencies and non-governmental organizations (NGOs) play significant roles in ensuring responsible and environmentally friendly development of nanotechnology. The EHS studies of nanomaterials can provide data and information to help the development of regulations and guidelines. We present research results on three aspects of EHS studies: physico-chemical characterization and measurement of nanomaterials; emission, exposure, and toxicity of nanomaterials; and control and abatement of nanomaterial releases using filtration technology. Measurement of nanoparticle agglomerates using a newly developed instrument, the Universal NanoParticle Analyzer (UNPA), is discussed. Exposure measurement results for silicon nanoparticles in a pilot scale production plant are presented, as well as exposure measurement and toxicity study of carbon nanotubes (CNTs). Filtration studies of nanoparticle agglomerates are also presented as an example of emission control methods.  相似文献   
128.
The concept that the first excited 0+ states in N = 90 nuclei are not a b \beta -vibration but a second vacuum formed by the combination of the quadrupole pairing force and the low density of oblate orbitals near the Fermi surface is supported by the blocking of this collective mode in 154Gd from coupling to the [505]11/2- single-particle quasi-neutron orbital in 155Gd . The coupling of this orbital to the 2+ g \gamma -vibration in 154Gd is observed since this coupling is not Pauli-blocked.  相似文献   
129.
Scanning optical coherence tomography (OCT) is limited in sensitivity and resolution by the restricted focal depth of the confocal detection scheme. Holoscopy, a combination of holography and Fourier-domain full-field OCT, is proposed as a way to detect photons from all depths of a sample volume simultaneously with uniform sensitivity and lateral resolution, even at high NAs. By using the scalar diffraction theory, as frequently applied in digital holographic imaging, we fully reconstruct the object field with depth-invariant imaging quality. In vivo imaging of human skin is demonstrated with an image quality comparable to conventionally scanned OCT.  相似文献   
130.
The sulfobetaine films were prepared on stainless steel and golden surfaces. In the first step, the poly(2-(dimethylamino)ethyl methacrylate) film was created by employing the electrografting polymerization technique. In the second step, this film was modified to polysulfobetaine, i.e. the polymer film bearing the zwitterionic groups. The presence of the electrografted film and its modification were determined by contact angle measurements, infrared spectroscopy in reflectance mode and X-ray photoelectron spectroscopy. The prepared films were homogeneous with the thickness from about 5 to 26 nm as determined by X-ray photoelectron spectroscopy. The atomic force microscopy measurements showed the increase of surface roughness upon the surface coating. In vitro tests using adherent RAT-2 fibroblast cells and fluorescently labelled bovine serum albumin proteins showed that prepared polysulfobetaine films can be used in applications requiring the resistance against cell attachment and biofouling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号