首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25997篇
  免费   854篇
  国内免费   144篇
化学   18690篇
晶体学   215篇
力学   491篇
数学   3278篇
物理学   4321篇
  2023年   182篇
  2022年   266篇
  2021年   363篇
  2020年   487篇
  2019年   471篇
  2018年   316篇
  2017年   272篇
  2016年   731篇
  2015年   623篇
  2014年   746篇
  2013年   1228篇
  2012年   1616篇
  2011年   1790篇
  2010年   1032篇
  2009年   866篇
  2008年   1488篇
  2007年   1411篇
  2006年   1396篇
  2005年   1298篇
  2004年   1138篇
  2003年   858篇
  2002年   899篇
  2001年   435篇
  2000年   368篇
  1999年   369篇
  1998年   362篇
  1997年   339篇
  1996年   350篇
  1995年   293篇
  1994年   319篇
  1993年   299篇
  1992年   262篇
  1991年   191篇
  1990年   218篇
  1989年   185篇
  1988年   195篇
  1987年   172篇
  1986年   161篇
  1985年   272篇
  1984年   257篇
  1983年   183篇
  1982年   200篇
  1981年   186篇
  1980年   182篇
  1979年   164篇
  1978年   195篇
  1977年   180篇
  1976年   137篇
  1975年   132篇
  1974年   158篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
881.
The reaction of AgCN with UO2, 4,4'-bipy, and phosphoric acid in water at 160 degrees C under autogeneously generated pressure results in the formation of [Ag(4,4'-bipy)]2[(UO2)2H3(PO4)3] (AgUP-1). Ag(2,2'-bipy)(UO2)2(HPO4)(PO4) (AgUP-2) has been prepared from the hydrothermal reaction (at 180 degrees C) of KAg(CN)2 with UO2(C2H3O2)2.2H2O and 2,2'-bipy. [Zn(2,2'-bipy)]2[UO2(HPO4)3] (ZnUP-1) was isolated from the hydrothermal reaction of UO2, 2,2'-bipyridyl, Zn(CN)2, and H3PO4. Single crystal X-ray diffraction experiments reveal that the structure of AgUP-1 consists of 2infinity[(UO2)2H3(PO4)3]2- expanded autunite-like layers in the [ac] plane, separated by 1infinity[Ag(4,4'-bipy)]+ chains of two-coordinate Ag+ bridged by 4,4'-bipy. The structure of AgUP-2 is composed of chains of edge-sharing UO7 pentagonal bipyramids that are linked by phosphate anions into 2infinity[(UO2)2(HPO4)(PO4)]1- sheets with the beta-uranophane topology that extend in the [ab] plane. Both sides of the sheets are decorated by [Ag(2,2'-bipy)]+ units, where the Ag+ cations are found in distorted trigonal planar environments. The structure of ZnUP-1 is 1D and consists of UO7 pentagonal bipyramids that are connected by phosphate anions that also bind four-coordinate zinc(II) to the periphery of the chains and five-coordinate zinc within the chains. Intense fluorescence from these compounds was observed.  相似文献   
882.
Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.  相似文献   
883.
The ultrafast excited-state dynamics of two carbonyl-containing carotenoids, 12'-apo-beta-caroten-12'-al and 8'-apo-beta-caroten-8'-al, have been investigated by transient absorption spectroscopy in a systematic variation of solvent polarity and temperature. In most of the experiments, 12'-apo-beta-caroten-12'-al was excited at 430 nm and 8'-apo-beta-caroten-8'-al at 445 or 450 nm via the S0 --> S2 (11Ag- --> 11Bu+) transition. The excited-state dynamics were then probed at 860 nm for 12'-apo-beta-caroten-12'-al and at 890 or 900 nm for 8'-apo-beta-caroten-8'-al. The temporal evolution of all transient signals measured in this work can be characterized by an ultrafast decay of the S2 --> SN absorption at early times followed by the formation of a stimulated emission (SE) signal, which subsequently decays on a much slower time scale. We assign the SE signal to a low-lying electronic state of the apocarotenals with intramolecular charge-transfer character (ICT --> S0). This is the first time that the involvement of an ICT state has been detected in the excited-state dynamics of a carbonyl carotenoid in nonpolar solvents such as n-hexane or i-octane. The amplitude ratio of ICT-stimulated emission to S2 absorption was weaker in nonpolar solvents than in polar solvents. We interpret the results in terms of a kinetic model, where the S1 and ICT states are populated from S2 through an ultrafast excited-state branching reaction (tau2 < 120 fs). Delayed formation of a part of the stimulated emission is due to the transition S1 --> ICT (tau3 = 0.5-4.1 ps, depending on the solvent), which possibly involves a slower backward reaction ICT --> S1. Determinations of tau1 were carried out for a large set of solvents. Especially in 12'-apo-beta-caroten-12'-al, the final SE decay, assigned to the nonradiative relaxation ICT --> S0, was strongly dependent on solvent polarity, varying from tau1 = 200 ps in n-hexane to 6.6 ps in methanol. In the case of 8'-apo-beta-caroten-8'-al, corresponding values were 24.8 and 7.6 ps, respectively. This indicates an increasing stabilization of the ICT state with increasing solvent polarity, resulting in a decreasing ICT-S0 energy gap. Tuning the pump wavelength from the blue wing to the maximum of the S0 --> S2 absorption band resulted in no change of tau1 in acetone and methanol. Additional measurements in methanol after excitation in the red edge of the S0 --> S2 band (480-525 nm) also show an almost constant tau1 with only a 10% reduction at the largest probe wavelengths. The temperature dependence of the tau1 value of 12'-apo-beta-caroten-12'-al was well described by Arrhenius-type behavior. The extracted apparent activation energies for the ICT --> S0 transitions were in general small (on the order of a few times RT), which is in the range expected for a radiationless process.  相似文献   
884.
We have synthesized a new class of flexible zwitterions 6a-e, in which a carboxylate is linked via an alkyl chain with variable length (one to five methylene groups) to a guanidiniocarbonylpyrrole cation. The self-association properties of these zwitterions were determined by NMR dilution studies in DMSO and by ESI-MS experiments. The stability and hence also the size of the aggregates formed via self-assembly is critically dependent on the length and therefore flexibility of the spacer. Whereas the smallest zwitterion 6a forms large aggregates already at low concentrations, the more flexible zwitterions only form small oligomers (6b) or dimers (6c-e) at much larger concentrations. The differences between the five zwitterions can be explained based on the different extent of intramolecular ion pairing within the monomers. Any intramolecular ion pairing, which becomes possible with increasing linker length, stabilizes the monomer and therefore destabilizes any oligomer.  相似文献   
885.
A hexaphenylbenzene-based zinc porphyrin dyad forms a 1:1 complex with a fullerene bearing two pyridyl groups via coordination of the pyridyl nitrogens with the zinc atoms. The fullerene is symmetrically located between the two zinc porphyrins. The binding constant for the complex is 7.3 x 10(4) M(-1) in 1,2-difluorobenzene. Photoinduced electron transfer from a porphyrin first excited singlet state to the fullerene occurs with a time constant of 3 ps, and the resulting charge-separated state has a lifetime of 230 ps. This self-assembled construct should form a basis for the construction of more elaborate model photosynthetic antenna-reaction center systems.  相似文献   
886.
In this paper, analysis strategies developed for a sequencing problem concerning the identification of an S100 protein isolated from human granulocytes are discussed. The analysis of a trypsinized lyophilized sample suggested the presence of a number of peptides which are non-tryptic in origin. During purification of proteins from cell lysates nonspecific cleavage can be observed which may reflect biological processes and can become an unavoidable analytical problem. Current mass spectrometric software is evaluated for the analysis of nonspecific digests in this context. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), high-performance liquid chromatography (HPLC)-MS/MS, and selected ion monitoring (SIM)-MS/MS have been used for peptide analysis and in addition HPLC-MS was carried out for protein analysis leading to the detection of an N-terminal modification of the protein. The success of the study is mainly due to the careful investigation of nonspecific cleavage products. Data obtained from the routine mass spectrometric analysis of an in-gel-digest allowed the identification of this protein as S100 calcium-binding protein A6-calcyclin whose expression in granulocytes has not been described so far.  相似文献   
887.
The methyl acrylate dimer (MAD) is a sterically hindered macromonomer, and the propagating radical can fragment to an unsaturated end group. The propagation‐rate coefficient (kp) for MAD was obtained by pulsed‐laser polymerization (PLP). The Mark–Houwink–Sakaruda parameters required for the analysis of the molecular weight distributions (MWDs) were obtained by multiple‐detector gel permeation chromatography (GPC) with on‐line viscometry. The small radical created by the fragmentation results in a short‐chain polymer that means the MWD may no longer be given by that expected for “ideal” PLP conditions; simulations suggest that the degree of polymerization required for “ideal” PLP conditions can be obtained from the primary point of inflection provided the GPC traces also show a clear secondary inflection point (radicals terminated by the second, rather than the first, pulse subsequent to initiation). Over the temperature range of 40–75 °C, the data can be best fitted by kp/dm3 mol?1 s?1 = 106.1 exp(?29.5 kJ mol?1), with a moderately large joint confidence interval for the Arrhenius parameters. The data are consistent with an increased activation energy and reduced frequency factor as compared with acrylate or methacrylate; both of these changes can be ascribed to hindrance. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3902–3915, 2001  相似文献   
888.
Er4F2[Si2O7][SiO4]: The First Rare‐Earth Fluoride Silicate with Two Different Silicate Anions By the reaction of Er2O3 with ErF3 and SiO2 at 700 °C in sealed tantalum capsules using CsCl as flux (molar ratio 5 : 2 : 3 : 20), the compound Er4F2[Si2O7][SiO4] (triclinic, P 1; a = 648.51(5), b = 660.34(5), c = 1324.43(9) pm, α = 87.449(8), β = 85.793(8), γ = 60.816(7)°; Vm = 148.69(1) cm3/mol, Z = 2) is obtained as pale pink platelets or lath‐shaped single crystals. It consists of disilicate anions [Si2O7]6– in eclipsed conformation, ortho‐silicate anions [SiO4]4– and isolated [Er4F2]10+ units comprising two edge‐shared [Er3F] triangles. Er3+ is surrounded by 7 + 1 (Er1) or 7 (Er2–Er4) anionic neighbors, respectively, of which two are F in the case of Er1 and Er4 but only one for Er2 and Er3. The other ligands recruit from oxygen atoms of the different oxosilicate groups. The crystal structure can be described as simple rowing up of the three building groups ([SiO4]4–, [Er4F2]10+, and [Si2O7]6–) along [001]. The necessity of a large excess of fluoride for a successful synthesis of Er4F2[Si2O7][SiO4] will be discussed.  相似文献   
889.
890.
A class II valence force field covering a broad range of organic molecules has been derived employing ab initio quantum mechanical "observables." The procedure includes selecting representative molecules and molecular structures, and systematically sampling their energy surfaces as described by energies and energy first and second derivatives with respect to molecular deformations. In this article the procedure for fitting the force field parameters to these energies and energy derivatives is briefly reviewed. The application of the methodology to the derivation of a class II quantum mechanical force field (QMFF) for 32 organic functional groups is then described. A training set of 400 molecules spanning the 32 functional groups was used to parameterize the force field. The molecular families comprising the functional groups and, within each family, the torsional angles used to sample different conformers, are described. The number of stationary points (equilibria and transition states) for these molecules is given for each functional group. This set contains 1324 stationary structures, with 718 minimum energy structures and 606 transition states. The quality of the fit to the quantum data is gauged based on the deviations between the ab initio and force field energies and energy derivatives. The accuracy with which the QMFF reproduces the ab initio molecular bond lengths, bond angles, torsional angles, vibrational frequencies, and conformational energies is then given for each functional group. Consistently good accuracy is found for these computed properties for the various types of molecules. This demonstrates that the methodology is broadly applicable for the derivation of force field parameters across widely differing types of molecular structures. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1782-1800, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号