首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4630篇
  免费   106篇
  国内免费   16篇
化学   3266篇
晶体学   54篇
力学   80篇
数学   241篇
物理学   1111篇
  2023年   23篇
  2022年   23篇
  2021年   38篇
  2020年   57篇
  2019年   67篇
  2018年   58篇
  2017年   39篇
  2016年   69篇
  2015年   85篇
  2014年   99篇
  2013年   206篇
  2012年   226篇
  2011年   274篇
  2010年   158篇
  2009年   151篇
  2008年   258篇
  2007年   267篇
  2006年   250篇
  2005年   204篇
  2004年   180篇
  2003年   179篇
  2002年   184篇
  2001年   117篇
  2000年   139篇
  1999年   85篇
  1998年   55篇
  1997年   59篇
  1996年   57篇
  1995年   50篇
  1994年   50篇
  1993年   62篇
  1992年   56篇
  1991年   50篇
  1990年   42篇
  1989年   51篇
  1988年   52篇
  1987年   46篇
  1986年   39篇
  1985年   61篇
  1984年   57篇
  1983年   53篇
  1982年   48篇
  1981年   39篇
  1980年   34篇
  1979年   52篇
  1978年   48篇
  1977年   54篇
  1976年   18篇
  1975年   27篇
  1974年   32篇
排序方式: 共有4752条查询结果,搜索用时 10 毫秒
51.
To visualize the condition of impregnation of polyethylene glycol (PEG) in waterlogged wood, we demonstrated magnetic transfer (MT) magnetic resonance imaging (MRI) through a series of process of PEG impregnation. Three different samples were examined; reference wood, 10 cm cut wood, and 5 cm cut wood. During this study, the upper section sample was kept immersed in water, for the middle and lower sections the concentration of PEG solution was changed at 20 wt% intervals from 20 to 100 wt%. The impregnated periods of each PEG solution concentration were 14 days. Then, MR imaging were performed with/without MT pulse. The MTR value for both 10 cm- and 5 cm-samples were shown to decrease at 20 wt% PEG at peak concentration. When the sample volume was large, e.g., 10 cm-sample, the MTR value decreased to 100 wt% PEG concentration. In contrast, when a sample volume was small, e.g., 5 cm-sample, MTR value decreased to 60 wt% PEG concentration. In conclusion, MTR analysis makes it possible to nondestructively visualize and evaluate the inner condition concerning the PEG impregnation method for waterlogged wood.  相似文献   
52.
A new “bright blood” strategy, outflow refreshment imaging, is introduced in which a number of overlapping slices are excited in rapid succession. Flowing spins that refresh each overlapped slice portion contribute a bright signal. Additionally, static tissue in each non-overlapped slice portion also yields a bright signal. However, the flow/static contrast is comparable to that produced in inflow refreshment images, and angiograms can be generated by conventional maximum intensity projection processing. The dual ability to visualize angiograms and static tissue images is a major benefit of the strategy. Computer simulations of flow sensitivities and in vivo results are presented which compare the outflow and inflow refreshment imaging strategies.  相似文献   
53.
A dynamic magneto-optical trap, which relies on the rapid randomization of population in Zeeman substates, has been demonstrated for fermionic strontium atoms on the 1S0-3P1 intercombination transition. The obtained sample, 1x10(6) atoms at a temperature of 2 microK in the trap, was further Doppler cooled and polarized in a far-off resonant optical lattice to achieve 2 times the Fermi temperature.  相似文献   
54.
The thermal phase transition of RbMnFe(CN)6 has been observed by Mn and Fe 3p-1s X-ray emission spectroscopy (XES) and 1s X-ray absorption spectroscopy (XAS). The thermal variations of the spin states and the valences of Mn and Fe were determined to be Mn2+(S=5/2)-NC-Fe3+(S=1/2) for the high-temperature (HT) phase and Mn3+(S=2)-NC-Fe2+(S=0) for the low-temperature (LT) phase. These transitions are thus caused by charge transfer between Mn and Fe. The temperature dependences of Mn and Fe 3p-1s XES and 1s XAS were observed as the composition of the spectra of the HT and LT phases. The ratios of the HT component in each spectrum show good agreement with the thermal transition curves observed with magnetic susceptibility measurements.  相似文献   
55.
35Cl NQR as well as heat capacity measurements of [(PyO)H][AuCl4] and its deuterated analog [(PyO)D][AuCl4] revealed successive phase transitions at 70.5 and 62.5 K, and at 71 and 63 K, respectively. The NQR frequency varied continuously through the upper transition point while discontinuously through the lower transition point. In the intermediate-temperature phase a remarkable decrease in the signal intensity was observed. These NQR observations as well as the feature of the heat capacity anomaly in which a broad peak is succeeded by a sharp peak with decreasing temperature suggest a possibility of normal-incommensurate-commensurate phase sequence.  相似文献   
56.
We developed a scanning microwave microscope (SμM) designed for high-throughput electric-property screening as well as for rapid construction of electronic phase diagrams at low temperatures. As a sensor probe, we used a high-Qλ/4 coaxial cavity resonator to which a thin needle with ball-tip end was attached. The sensor module was mounted on the low-temperature XYZ stage, which allowed us to map out the change of resonance frequency and quality factor due to the local tip-sample interaction at low temperatures. From the measurements of combinatorial thin films, such as Ti1−xCoxO2−δ and Nd0.9Ca0.1Ba2Cu3O7−δ (NCBCO), it was demonstrated that this SμM system has enough performance for the high-throughput characterization of sample conductance under variable temperature conditions.  相似文献   
57.
An optical atomic clock scheme is proposed that utilizes two lasers to establish coherent coupling between the 5s2 1S0 ground state of 88Sr and the first excited state, 5s5p 3P0. The coupling is mediated by the broad 5s5p 1P1 state, exploiting the phenomenon of electromagnetically induced transparency. The effective linewidth of the clock transition can be chosen at will by adjusting the laser intensity. By trapping the 88Sr atoms in an optical lattice, long interaction times with the two lasers are ensured; Doppler and recoil effects are eliminated. Based on a careful analysis of systematic errors, a clock accuracy of better than 2 x 10(-17) is expected.  相似文献   
58.
59.
For the production of high-density ultracold neutrons (UCNs), we placed 0.8 K superfluid helium in a cold neutron moderator. We resolved previous heat-load problems in the spallation neutron source that were particularly serious below 1 K. With a proton-beam power of 400 MeV×1 μA, a UCN production rate of 4 UCN cm(-3) s(-1) at the maximum UCN energy of E(c)=210 neV and a storage lifetime of 81 s were obtained. A cryogenic test showed that the production rate can be increased by a factor of 10 with the same storage lifetime by increasing the proton-beam power as well as (3)He pumping speed.  相似文献   
60.
Tb3+ doped CaZrO3 has been prepared by an easy solution combustion synthesis method. The combustion derived powder was investigated by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. A room temperature photoluminescence study showed that the phosphors can be efficiently excited by 251 nm light with a weak emission in the blue and orange region and a strong emission in green light region. CaZrO3:Tb3+ exhibits three thermoluminescence (TL) glow peaks at 126 °C, 200 °C and 480 °C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0233 is identified as an O? ion. Centre II with an axial symmetric g-tensor with principal values g=1.9986 and g?=2.0023 is assigned to an F+ centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F+ centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F centre and also the F+ centre appear to correlate with the observed high temperature TL peak in CaZrO3:Tb3+ phosphor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号