首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
物理学   74篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   7篇
  2004年   3篇
  2002年   4篇
  2001年   2篇
  2000年   6篇
  1996年   3篇
  1995年   4篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1979年   1篇
排序方式: 共有74条查询结果,搜索用时 234 毫秒
41.
42.
43.
Misfit strain plays a crucial role in semiconductor heteroepitaxy, driving alloy intermixing or the introduction of dislocations. Here we predict a strong coupling between these two modes of strain relaxation, with unexpected consequences. Specifically, strain relaxation by dislocations can suppress intermixing between the heterolayer and the substrate. Monte Carlo simulations and continuum modeling show that the suppression, though not absolute, can be surprisingly large, even at high temperatures. The effect is strongest for a large misfit (e.g., InAs on GaAs) or for thin substrates (e.g., Ge on silicon on insulator).  相似文献   
44.
When strained Stranski-Krastanow islands are used as "self-assembled quantum dots," a key goal is to control the island position. Here we show that nanoscale grooves can control the nucleation of epitaxial Ge islands on Si(001), and can drive lateral motion of existing islands onto the grooves, even when the grooves are very narrow and shallow compared to the islands. A position centered on the groove minimizes energy. We use as prototype grooves the trenches which form naturally around islands. During coarsening, the shrinking islands move laterally to sit directly astride that trench. In subsequent growth, we demonstrate that islands nucleate on the "empty trenches" which remain on the surface after complete dissolution of the original islands.  相似文献   
45.
Using low-energy electron microscopy, we have investigated the influence of an external flux on the structure of the Si(111) surface during growth and etching at elevated temperatures. We find that varying the adatom supersaturation effectively changes the surface free energies of coexisting 7 x 7 and '1 x 1' regions of the surface. In response, the boundaries separating the phases adopt a new steady-state configuration. The measured configuration can be used to quantitatively determine the difference in free energy between the phases, Deltagamma. The change in Deltagamma provides a measure of the local supersaturation at the surface, and can be interpreted as a change in the phase-transition temperature.  相似文献   
46.
A crystal facet is metastable under stress, but the process of growth or sublimation roughens the facet and is expected to render it unstable. This poses a fundamental limit for heteroepitaxial growth of planar layers, e.g., in semiconductor devices. An analysis shows that this facet-growth instability can be suppressed to an arbitrary degree by growing slowly. Moreover, the local stress ("force dipole") inherent in atomic steps introduces a new, purely kinetic effect that dominates at low strain and can render planar growth dynamically stable.  相似文献   
47.
At semiconductor-metal junctions, the Schottky barrier height is generally fixed by "Fermi-level pinning." We find that when a semiconducting carbon nanotube is end contacted to a metal (the optimal geometry for nanodevices), the behavior is radically different. Even when the Fermi level is fully "pinned" at the interface, the turn-on voltage is that expected for an unpinned junction. Thus the threshold may be adjusted for optimal device performance, which is not possible in planar contacts. Similar behavior is expected at heterojunctions between nanotubes and semiconductors.  相似文献   
48.
The electrical properties of graphene depend sensitively on the substrate. For example, recent measurements of epitaxial graphene on SiC show resistance arising from steps on the substrate. Here we calculate the deformation of graphene at substrate steps, and the resulting electrical resistance, over a wide range of step heights. The elastic deformations contribute only a very small resistance at the step. However, for graphene on SiC(0001) there is strong substrate-induced doping, and this is substantially reduced on the lower side of the step where graphene pulls away from the substrate. The resulting resistance explains the experimental measurements.  相似文献   
49.
Nanowire growth occurs by step flow at the wire-catalyst interface, with strikingly different step-flow kinetics for solid versus liquid catalysts. Here we report quantitative in?situ measurements of step flow together with a kinetic model that reproduces the behavior. This allows us to identify the key parameters controlling step-flow growth, evaluate changes in the catalyst composition during growth, and identify the most favorable conditions for growing abrupt heterojunctions in nanowires.  相似文献   
50.
Electrostatic screening in multilayer graphene is highly nonlinear due to the vanishing density of states at the Fermi level. Using a discrete model we study the charge screening normal to the layers. Our model shows a strong charge and temperature dependence and has a simple continuum limit at T=0 for undoped systems. Doped systems can exhibit more complex behavior due to minority-carrier screening. Most importantly we find that the screening length can vary more than an order of magnitude depending on the experimental conditions, reconciling the large range of screening lengths reported in previous experiments. This has important consequences for technological applications of multilayer graphene used in electrodes or transistor channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号