首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   26篇
化学   494篇
晶体学   9篇
力学   9篇
数学   40篇
物理学   145篇
  2023年   6篇
  2022年   21篇
  2021年   17篇
  2020年   20篇
  2019年   15篇
  2018年   14篇
  2017年   11篇
  2016年   21篇
  2015年   16篇
  2014年   18篇
  2013年   31篇
  2012年   54篇
  2011年   54篇
  2010年   30篇
  2009年   27篇
  2008年   34篇
  2007年   24篇
  2006年   30篇
  2005年   31篇
  2004年   23篇
  2003年   15篇
  2002年   11篇
  2001年   11篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1994年   8篇
  1993年   3篇
  1992年   11篇
  1991年   13篇
  1990年   7篇
  1989年   13篇
  1987年   3篇
  1986年   4篇
  1985年   10篇
  1984年   4篇
  1983年   7篇
  1982年   10篇
  1981年   3篇
  1978年   4篇
  1977年   3篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1970年   4篇
  1969年   3篇
  1966年   2篇
排序方式: 共有697条查询结果,搜索用时 15 毫秒
91.
Ultrafast relaxation dynamics of the excited singlet (S(1)) state of Michler's ketone (MK) has been investigated in different kinds of solvents using a time-resolved absorption spectroscopic technique with 120 fs time resolution. This technique reveals that conversion of the locally excited (LE) state to the twisted intramolecular charge transfer (TICT) state because of twisting of the N,N-dimethylanilino groups with respect to the central carbonyl group is the major relaxation process responsible for the multi-exponential and probe-wavelength-dependent transient absorption dynamics of the S1 state of MK, but solvation dynamics does not have a significant role in this process. Theoretical optimization of the ground-state geometry of MK shows that the dimethylanilino groups attached to the central carbonyl group are at a dihedral angle of about 51 degrees with respect to each other because of steric interaction between the phenyl rings. Following photoexcitation of MK to its S1 state, two kinds of twisting motions have been resolved. Immediately after photoexcitation, an ultrafast "anti-twisting" motion of the dimethylanilino groups brings back the pretwisted molecule to a near-planar geometry with high mesomeric interaction and intramolecular charge transfer (ICT) character. This motion is observed in all kinds of solvents. Additionally, in solvents of large polarity, the dimethylamino groups undergo further twisting to about 90 degrees with respect to the phenyl ring, to which it is attached, leading to the conversion of the ICT state to the TICT state. Similar characteristics of the absorption spectra of the TICT state and the anion radical of MK establish the nearly pure electron transfer (ET) character of the TICT state. In aprotic solvents, because of the steep slope of the potential energy surface near the Franck-Condon (FC) or LE state region, the LE state is nearly nonemissive at room temperature and fluorescence emission is observed from only the ICT and TICT states. Alternatively, in protic solvents, because of an intermolecular hydrogen-bonding interaction between MK and the solvent, the LE region is more flat and stimulated emission from this state is also observed. However, a stronger hydrogen-bonding interaction between the TICT state and the solvent as well as the closeness between the two potential energy surfaces due to the TICT and the ground states cause the nonradiative coupling between these states to be very effective and, hence, cause the TICT state to be weakly emissive. The multi-exponentiality and strong wavelength-dependence of the kinetics of the relaxation process taking place in the S1 state of MK have arisen for several reasons, such as strong overlapping of transient absorption and stimulated emission spectra of the LE, ICT, and TICT states, which are formed consecutively following photoexcitation of the molecule, as well as the fact that different probe wavelengths monitor different regions of the potential energy surface representing the twisting motion of the excited molecule.  相似文献   
92.
With the help of electrochemical, steady state and time resolved fluorescence (fluorescence lifetimes by using time correlated single photon counting technique) and nanosecond laser flash photolysis methods, the nature of charge separation along with the energy wasting charge recombination processes within a short-chained organic dyad 1-(4-Bromo-phenyl)-3-(2-methoxy-naphthalen-1-yl)-propenone (MNBA) has been revealed. In MNBA, the donor 2-methoxynaphthalene (2MNT) is connected with the acceptor p-bromoacetophenone (PBA) by an unsaturated olefinic bond. Though in the ground state elongated type structure (E-form) is observable from NMR spectra but on photoexcitation, another conformers possibly of the nature of folded type isomeric species (termed as Z-isomer) were also apparent from time resolved fluorescence measurements. However, preponderance of elongated form in the excited singlet state has been established from this time resolved measurements. NMR study on photoirradiated sample and theoretical predictions from computations using CIS method with Lanl2DZ basis set also indicate in favor of the propositions made on the formations of the two possible conformers and the stability of elongated isomeric species in the electronic excited state from the experimental results. The energy wasting charge recombination rate, kCR, determined from the transient absorption measurements by nanosecond laser flash photolysis (LFP) technique was found to be (kCR, ∼1.9×105 s−1) significantly lower than the charge-separation rate, kcs∼9.4×107 s−1, measured from the time resolved fluorescence. This observation demonstrates that MNBA may serve as an efficient candidate to construct artificial light energy conversion devices or components of molecular photovoltaic cells.  相似文献   
93.
In this paper we examine the constrained optimization of explicit Runge–Kutta (RK) schemes coupled with central spatial discretization schemes to solve the one-dimensional convection equation. The constraints are defined with respect to the correct error propagation equation which goes beyond the traditional von Neumann analysis   developed in Sengupta et al. [T.K. Sengupta, A. Dipankar, P. Sagaut, Error dynamics: beyond von Neumann analysis, J. Comput. Phys. 226 (2007) 1211–1218]. The efficiency of these optimal schemes is demonstrated for the one-dimensional convection problem and also by solving the Navier–Stokes equations for a two-dimensional lid-driven cavity (LDC) problem. For the LDC problem, results for Re=1000Re=1000 are compared with results using spectral methods in Botella and Peyret [O. Botella, R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Comput. Fluids 27 (1998) 421–433] to calibrate the method in solving the steady state problem. We also report the results of the same flow at Re=10,000Re=10,000 and compare them with some recent results to establish the correctness and accuracy of the scheme for solving unsteady flow problems. Finally, we also compare our results for a wave-packet propagation problem with another method developed for computational aeroacoustics.  相似文献   
94.
The present paper deals with the problem of non-selective harvesting of a prey-predator system in which both the prey and the predator species obey the law of logistic growth and each predators functional response to the prey approaches a constant as the prey population increases. Boundedness of the exploited system is examined. The existence of its steady states and their stability are studied using eigenvalue analysis. The existence of bionomic equilibria has been considered. The problem of determining the optimal harvest policy is then solved by using Pontryagin's maximal principle. Finally, some numerical examples are given to illustrate the results.  相似文献   
95.
In the present study, we have synthesized a number of Al-based Al65Cu35???x Nbx ternary alloys by mechanical alloying and undertaken a detailed characterization of their microstructural evolution by X-ray diffraction, high-resolution transmission electron microscopy and positron annihilation spectroscopy. To predict the phase-equilibrium in a given ternary powder blend subjected to mechanical alloying, we have modified the Miedema model to incorporate the influence of interfacial energy contribution in solid-state amorphization and analytically calculate the enthalpy and Gibbs energy of ternary amorphous and nanocrystalline solid solutions. The predicted trend compares well with the experimental data. Finally, an attempt has been made to determine the mechanism of solid-state amorphization in Al65Cu35?xNbx alloys utilizing both experimental results and model-based thermodynamic calculations.  相似文献   
96.
97.
Salicylaldimine Schiff bases represent an important class of hetero‐polydentate ligands capable of forming mononuclear, binuclear, and polynuclear complexes with transition and non‐transition metals. In this report, we developed an easy synthesis of BODIPY‐based salicylaldimine Schiff bases and synthesized five new derivatives. These were characterized by elemental analysis, infrared, UV‐Vis, nuclear magnetic resonance spectroscopy, and X‐ray crystallography. Finally, one of the Schiff bases was reacted with BF3·OEt2 to synthesize corresponding bis‐BF2 boron complex. The photophysical and electrochemical properties of the Schiff bases and the boron complex were evaluated and rationalized by theoretical calculations. The bis‐BF2 boron complex showed excited state charge redistribution, thus could be useful as sensitizers for designing new dye‐sensitized solar cells.  相似文献   
98.
Porous solids that can be switched between different forms with distinct physical properties are appealing candidates for separation, catalysis, and host–guest chemistry. In this regard, porous organic cages (POCs) are of profound interest because of their solution‐state accessibility. However, the application of POCs is limited by poor chemical stability. Synthesis of an exceptionally stable imine‐linked (4+6) porous organic cage ( TpOMe‐CDA ) is reported using 2,4,6‐trimethoxy‐1,3,5‐triformyl benzene (TpOMe) as a precursor aldehyde. Introduction of the ‐OMe functional group to the aldehyde creates significant steric and hydrophobic characteristics in the environment around the imine bonds that protects the cage molecules from hydrolysis in the presence of acids or bases. The electronic effect of the ‐OMe group also plays an important role in enhancing the stability of the reported POCs. As a consequence, TpOMe‐CDA reveals exceptional chemical stability in neutral, acidic and basic conditions, even in 12 m NaOH. Interestingly, TpOMe‐CDA exists in three different porous and non‐porous polymorphic forms (α, β, and γ) with respect to differences in crystallographic packing and the orientation of the flexible methoxy groups. All of the polymorphs retain their crystallinity even after treatment with acids and bases. All the polymorphs of TpOMe‐CDA differ significantly in their properties as well as morphology and could be reversibly switched in the presence of an external stimulus.  相似文献   
99.
100.
The coordinatively unsaturated chromium(II)-based Cr3[(Cr4Cl)3(BTT)8]2 (Cr−BTT; BTT3−=1,3,5-benzenetristetrazolate) metal–organic framework (MOF) has been shown to exhibit exceptional selectivity towards adsorption of O2 over N2/H2. Using periodic density functional theory (DFT) calculations, we attempted to decipher the origin of this puzzling selectivity. By computing and analyzing the magnetic exchange coupling, binding energies, the partial density of states (pDOS), and adsorption isotherms for the pristine and gas-bound MOFs [(Cr4(X)4Cl)3(BTT)8]3− (X=O2, N2, and H2), we unequivocally established the role of spin states and spin coupling in controlling the gas selectivity. The computed geometries and gas adsorption isotherms are consistent with the earlier experiments. The binding of O2 to the MOF follows an electron-transfer mechanism resulting in a CrIII superoxo species (O2.−) with a very strong antiferromagnetic coupling between the two centers, whereas N2/H2 are found to weakly interact with the metal center and hence only slightly perturb the associated coupling constants. Although the gas-bound and unbound MOFs have an S=0 ground state (GS), the nature of spin the configurations and the associated magnetic exchanges are dramatically different. The binding energy and the number of oxygen molecules that can favorably bind to the Cr center were found to vary with respect to the spin state, with a significant energy margin (47.6 kJ mol−1). This study offers a hitherto unknown strategy of using spin state/spin couplings to control gas adsorption selectivity in MOFs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号