首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   1篇
化学   199篇
晶体学   3篇
力学   3篇
数学   3篇
物理学   23篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   15篇
  2012年   13篇
  2011年   13篇
  2010年   5篇
  2009年   9篇
  2008年   22篇
  2007年   16篇
  2006年   14篇
  2005年   14篇
  2004年   13篇
  2003年   8篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   10篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   6篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1975年   3篇
  1968年   1篇
排序方式: 共有231条查询结果,搜索用时 312 毫秒
21.
22.
Silver nanodimers with a small gap of a few nanometers aligned on glass substrates were used to enhance hyper-Raman scattering of crystal violet dye molecules. When localized surface plasmon of the dimer array was resonantly excited along the interparticle axis, hyper-Raman intensity was significantly enhanced. Moreover, the spectral appearance was slightly different between the two excitation polarizations, suggesting a possibility of two resonance contributions at one-photon and two-photon energies. Since the plasmonic property of dimer arrays can be controlled by the dimer geometry, the dimer arrays are expected to be well-defined substrates for surface-enhanced hyper-Raman spectroscopy.  相似文献   
23.
To investigate the preferential complexing behavior of isomeric xylenes, syndiotactic polystyrene (sPS) membranes are prepared using varying compositions of m‐ and p‐xylene. Complex formation between sPS and the xylenes was studied by means of thermogravimetric and FT‐IR analyses to determine the exact amounts of solvent molecules present per styrene repeating unit. A preferential complexing ability of p‐xylene was revealed due to its favorable interaction with sPS.  相似文献   
24.
No systematic study has been reported on the lamellar thickening in atactic poly(acrylonitrile) (PAN) upon annealing because PAN, in the form of solution‐cast films or their drawn products, generally shows no small‐angle X‐ray scattering (SAXS) maximum corresponding to the lamellar thickness. In this work, PAN crystals were precipitated during the thermal polymerization of acrylonitrile in solution. The nascent PAN film, obtained by the filtration of the crystal suspension, exhibited a clear SAXS maximum revealing the lamellar structure. The lamellar thickening upon annealing of the nascent PAN films was studied in the temperature range 100–180 °C, where the degradation was minimal, as confirmed by the absence of an IR absorption band at 1605 cm−1 ascribed to the cyclized nitrile groups. Above 190 °C, the degradation of the samples was significant, and the SAXS became too broad to determine the scattering maximum. The long period was significantly affected by the annealing time (ta) and the temperature (Ta). Depending on ta, three stages were observed for the lamellar thickening behavior. The lamellar thickness stayed constant in stage I (ta = 0.5–3 min, depending on Ta), rapidly increased in stage II (ta = 0.5–8 min), and stayed at a constant value characteristic for each Ta at yet longer ta's in stage III. The lamellar thickness characteristic for Ta increased rapidly with increasing Ta at 165 °C (or higher), which was 152 °C lower than the estimated melting temperature of PAN (Tm = 317 °C). A possible mechanism for such lamellar thickening in PAN far below the Tm is discussed on the basis of the enhanced chain mobility in the crystalline phase above the crystal/crystal reversible transition at 165–170 °C detected by differential scanning calorimetry and wide‐angle X‐ray diffraction. The structural changes associated with annealing are also discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2571–2579, 2000  相似文献   
25.
Wholly aromatic poly(azomethine)s with 1,5‐ or 2,6‐substituted naphthalene moiety in the main chains were prepared in aprotic polar solvents or m‐cresol under various reaction conditions. In the polymerization of 1,5‐diaminonaphthalene with terephthalaldehyde, the polymer that synthesized in (HMPA/DMSO) at room temperature for 24 h by adding 5 wt % of calcium chloride and a very small amount of p‐toluenesulfonic acid showed the highest reduced viscosity in all of the polymers from 1,5‐diaminonaphthalene. The reduced viscosity of poly(azomethine)s synthesized from 2,6‐diaminonaphthalene with 2,6‐diformylnaphthalene in m‐cresol and with terephthalaldehyde in HMPA/DMSO were ηred = 0.35 and 0.36, respectively. The thermal analysis showed the poly(azomethine)s had high thermal stability and the glass‐transition temperatures of these polymers are about 250 °C. The X‐ray diffraction showed that they are partially crystalline. They could be polymerized again by second stage polycondensation in polyphosphoric acid. The reduced viscosities of the obtained polymers were about 2–5 times as high as that of the pristine polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1064–1072, 2000  相似文献   
26.
The carbomethoxy group at the C2 position of the 2,5-multisubstituted 1,3-dioxanes prefers the axial conformation rather than the equatorial one due to an anomeric effect. The trans isomers of the 5-monosubstituted compounds are more selectively hydrolyzed than the cis isomers. Based on the calculated results, hydrolysis to the trans isomers is attributed to the larger carbonyl charges of the trans than those of the cis isomers. The anomeric and homoanomeric effects will explain the axial preference of the carbomethoxy group and selective hydrolysis to the trans isomers. Furthermore, the calculated stability between the cis and trans isomers is in good agreement with the experimental results in the equilibrium state.  相似文献   
27.
Hydroxyapatite is mineralized along the long axis of collagen fiber during osteogenesis. Mimicking such biomineralization has great potential to control inorganic structures and is fast becoming an important next-generation inorganic synthesis method. Inorganic matter synthesized by biomineralization can have beautiful and functional structures that cannot be created artificially. In this study, we applied biomineralization to the synthesis of the only photocatalyst in practical use today, titanium dioxide (TiO(2)). The photocatalytic activity of TiO(2) mainly relates to three properties: morphology, crystal phase, and light-use efficiency. To optimize TiO(2) morphology, we used a simple sequential peptide as an organic template. TiO(2) mineralized by a β-sheet peptide nanofiber template forms fiber-like shapes that are not observed for mineralization by peptides in the shape of random coils. To optimize TiO(2) crystal phase, we mineralized TiO(2) with the template at 400 °C to transform it into the rutile phase and at 700 °C to transform it into a mixed phase of anatase and rutile. To optimize light-use efficiency, we introduced nitrogen atoms of the peptide into the TiO(2) structure as doped elemental material during sintering. Thus, this biomineralization method enables control of inorganic morphology, crystal phase, and light-use efficiency in a single process.  相似文献   
28.
Liquid N,N,N',N'-tetramethyl-ethane-1,2-diamine (tmeda) was intercalated into preprepared C(6)Li or C(12)Li. X-ray diffraction from the ternary compound indicates an identity period of 11.5 ?. The (13)C NMR line shifts show that tmeda molecules form a screen between the graphene planes and the lithium ions. Small-angle X-ray scattering showed that no higher structural ordering was present but revealed a progressive roughening of the surfaces with successive intercalation of lithium and amine into the graphite galleries.  相似文献   
29.
Tropone‐fused, various π‐conjugated polymers ( P2 – P5 ) were synthesized by the palladium‐catalyzed coupling reaction of 1,4‐dibromo‐6,8‐dimethyl‐7H‐benzocyclohepten‐7‐one with aromatic divinyl, diboronic acid, and diethynyl compounds. The molecular orbital calculation of the model compounds was performed to discuss effective conjugation length of the repeating unit of the polymers. The absorption spectra of phenylenevinylene‐type polymers shifted to longer wavelengths than the model compounds by about 60 nm. They exhibited green fluorescence [λmax(em) = 544 and 561 nm]. The absorption spectrum of a phenylene‐type polymer blueshifted by 10 nm; however, that of a phenyleneethynylene‐type polymer redshifted by 83 nm as compared with their model compounds. They showed fluorescence with peak maxima at 457 and 489 nm, respectively. As a result, the absorption spectra of phenylene‐ and phenylenevinylene‐type polymers blueshifted, but that of a phenyleneethynylene‐type polymer redshifted by the annulation of tropone onto a benzene ring in the conjugated polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1208–1215, 2004  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号