首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   2篇
化学   58篇
晶体学   2篇
物理学   8篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   8篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有68条查询结果,搜索用时 0 毫秒
61.
Tin-doped indium oxide (ITO) microcrystals were successfully synthesized in supercritical water (SCW) using hydrazine (N2H4) as a reducing agent. Using a mixture of tin and indium hydroxides prepared at pH = 9.4 as a precursor, ITO microcrystals were synthesized at temperatures 400–450 °C under pressures 25–30 MPa. Synthesizing in SCW effectively shortened the time required to synthesize the ITO microcrystals to below 30 mins. The effect of reducing agents (ethanol, formic acid, and N2H4) and reaction conditions on the formation of ITO particles were investigated, and it was found that N2H4, which is superior to ethanol and formic acid, played a key role in the doping of the In2O3 structure with Sn4+ to form ITO particles with a blue color. Addition of N2H4 possibly depleted the oxygen in the In(Sn)OOH structure, accelerating the formation of cubic In2O3 and introduced Sn4+ into the structure along with the creation of oxygen vacancies. It was also found that the high temperatures and the properties of the SCW, such as ion product, strongly affected the morphology of the ITO particles and the Sn4+ doping. Based on these results, a mechanism has been proposed for the synthesis of ITO particles under SCW conditions. This study demonstrates that due to the unique properties of SCW, the synthesis of doped oxides in SCW is a plausible alternative method.  相似文献   
62.
The decomposition of 2-propylphenol (PP) at 673 K and a water density of 0–0.5 g cm−3 yielded 2-isopropylphenol (IPP), phenol and 2-cresol. Gas products were methane, carbon dioxide, ethylene and propene. The decomposition was found to occur through rearrangement and alkylation, that is, (1) rearrangement of the propyl functional group from PP to IPP, (2) dealkylation of PP to phenol, (3) dealkylation of PP to 2-cresol. The decomposition probably occurred by a free-radical mechanism. The reaction rate constants of each pathway were determined and it was found that these were invariant over all the water densities studied at the given temperature.  相似文献   
63.
The intermolecular interaction potential of the H2-H2 system was calculated by an ab initio molecular orbital method using several basis sets (up to 6-31 lG(3pd)) with inclusion of the electron correlation correction of the Møller-Plesset perturbation method and the basis set superposition error (BSSE) correction of the counterpoise method in order to evaluate the basis set effect. The calculated interaction energies depend strongly on the basis set used. Whereas the interaction energies of the repulsive and coulombic energy components calculated at the Hartree-Fock level are not affected by a change of basis set, the dispersion energy component depends strongly on the basis set used. Parameters of an exp-6-1 type non-bonding interaction potential were optimized on the basis of the MP4(SDTQ)/6-311G(3p) level intermolecular interaction energies of the H2-H2 system.  相似文献   
64.
The hydrogen abstraction reactions between chlorine‐substituted acetaldehydes and OH radicals have been investigated by using ab initio molecular orbital theory. Equilibrium geometries and transition‐state structures have been optimized at the (U)MP2/6‐311G(d,p) level. Activation barriers and heats of reaction for different reaction channels have been estimated from the single‐point calculations at the (U)MP2/6‐311G(2df,2p) level. Three, two, and one hydrogen abstraction channel have been found for the mono‐, di‐, and trichloroacetaldehyde, respectively. At a higher temperature region, hydrogen abstraction from the formyl group is found to be the major reaction channel for all the three chloroacetaldehydes. The effect of halogen substitution on reactivity toward hydrogen abstraction has been discussed. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1509–1521, 2001  相似文献   
65.
The CCSD(T) level interaction energies of eight orientations of nitrobenzene-benzene complexes and nine orientations of nitrobenzene dimers at the basis set limit have been estimated. The calculated interaction energy of the most stable slipped-parallel (C(s)) nitrobenzene-benzene complex was -4.51 kcal/mol. That of the most stable slipped-parallel (antiparallel) (C(2h)) nitrobenzene dimer was -6.81 kcal/mol. The interaction energies of these complexes are significantly larger than that of the benzene dimer. The T-shaped complexes are substantially less stable. Although nitrobenzene has a polar nitro group, electrostatic interaction is always considerably weaker than the dispersion interaction. The dispersion interaction in these complexes is larger than that in the benzene dimer, which is the cause of the preference of the slipped-parallel orientation in these complexes.  相似文献   
66.
Transparent types of inorganic pigments are important as they can be used in a variety of applications, such as metallic finishing, contrast enhancing luminescent pigments, high-end optical filters, and so on. Currently, the difficulty in producing monodisperse and stable binary metal oxide nano pigments at low temperature hampers the applicability and realization of transparent blue nano pigments. Here, for the first time, we report organic ligand capped CoAl2O4 hybrid transparent nano pigment, which has a particle size less than 8 nm with well-stabilized single nanocrystals, using organic ligand-assisted supercritical water as the reaction medium. The organic ligand capping could effectively inhibit the particle growth and also control the size of nanocrystals. This helps to diminish the scattering effect of the nano blue pigment, realizing a transparent cobalt blue nano pigment without any postheat treatment.  相似文献   
67.
The CH/π contact structures of the fucose-phenol and fucose-indole complexes and the stabilization energies by formation of the complexes (E(form)) were studied by ab initio molecular orbital calculations. The three types of interactions (CH/π and OH/π interactions and OH/O hydrogen bonds) were compared and evaluated in a single molecular system and at the same level of theory. The E(form) calculated for the most stable CH/π contact structure of the fucose-phenol complex at the CCSD(T) level (-4.9 kcal/mol) is close to that for the most stable CH/π contact structure of the fucose-benzene complex (-4.5 kcal/mol). On the other hand the most stable CH/π contact structure of the fucose-indole complex has substantially larger E(form) (-6.5 kcal/mol). The dispersion interaction is the major source of the attraction in the CH/π contact structures of the fucose-phenol and fucose-indole complexes as in the case of the fucose-benzene complex. The electrostatic interactions in the CH/π contact structures are small (less than 1.5 kcal/mol). The nature of the interactions between the nonpolar surface of the carbohydrate and aromatic rings is completely different from that of the conventional hydrogen bonds where the electrostatic interaction is the major source of the attraction. The distributed multipole analysis and DFT-SATP analysis show that the dispersion interactions in the CH/π contact structure of fucose-indole complex are substantially larger than those in the CH/π contact structures of fucose-benzene and fucose-phenol complexes. The large dispersion interactions are responsible for the large E(form) for the fucose-indole complex.  相似文献   
68.
As an analytical application for pyrochemical reprocessing using molten salts, quantitative analysis of uranium and lanthanides by UV/Vis/NIR absorption spectrophotometry was performed. Electronic absorption spectra of LiCl–KCl eutectic at 773 K including trivalent uranium and eight rare earth elements (Y, La, Ce, Pr, Nd, Sm, Eu, and Gd as fission product elements) were measured in the wavenumber region of 4,500–33,000 cm?1. The composition of the solutes was simulated for a reductive extraction condition in a pyroreprocessing process for spent nuclear fuels, that is, about 2 wt% U and 0.1–2 wt% rare earth elements. Since U(III) possesses strong absorption bands due to fd transitions, an optical quartz cell with short light path length of 1 mm was adopted in the analysis. The quantitative analysis of trivalent U, Nd, Pr, and Sm was possible with their ff transition intensities in the NIR region. The analytical results agree with the prepared concentrations within 2σ experimental uncertainties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号