首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6462篇
  免费   1289篇
  国内免费   1010篇
化学   4676篇
晶体学   188篇
力学   392篇
综合类   99篇
数学   697篇
物理学   2709篇
  2024年   16篇
  2023年   117篇
  2022年   272篇
  2021年   276篇
  2020年   321篇
  2019年   351篇
  2018年   297篇
  2017年   325篇
  2016年   393篇
  2015年   425篇
  2014年   471篇
  2013年   623篇
  2012年   706篇
  2011年   639篇
  2010年   503篇
  2009年   496篇
  2008年   479篇
  2007年   391篇
  2006年   311篇
  2005年   279篇
  2004年   219篇
  2003年   158篇
  2002年   144篇
  2001年   108篇
  2000年   68篇
  1999年   78篇
  1998年   33篇
  1997年   47篇
  1996年   49篇
  1995年   48篇
  1994年   20篇
  1993年   23篇
  1992年   12篇
  1991年   14篇
  1990年   11篇
  1989年   9篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1980年   4篇
  1936年   2篇
排序方式: 共有8761条查询结果,搜索用时 15 毫秒
101.
Halogen bonds (XBs) between metal anions and halides have seldom been reported because metal anions are reactive for XB donors. The pyramidal-shaped Mn(CO)5 anion is a candidate metallic XB acceptor with a ligand-protected metal core that maintains the negative charge and an open site to accept XB donors. Herein, Mn(CO)5 is prepared by electrospray ionization, and its reaction with CH3I in gas phase is studied using mass spectrometry and density functional theory (DFT) calculation. The product observed experimentally at m/z = 337 is assigned as [IMn(CO)4(OCCH3)], which is formed by successive nucleophilic substitution and reductive elimination, instead of the halogen-bonded complex (XC) CH3−I···Mn(CO)5, because the I···Mn interaction is weak within XC and it could be a transient species. Inspiringly, DFT calculations predict that replacing CH3I with CF3I can strengthen the halogen bonding within the XC due to the electro-withdrawing ability of F. More importantly, in so doing, the nucleophilic substitution barrier can be raised significantly, ~30 kcal/mol, thus leaving the system trapping within the XC region. In brief, the combination of a passivating metal core and the introduction of an electro-withdrawing group to the halide can enable strong halogen bonding between metallic anion and iodide.  相似文献   
102.
Extracellular matrix (ECM) stiffness affects the drug resistance behavior of cancer cells, while multidrug resistance protein 1 (MRP1) on the cell membrane confers treatment resistance via actively transporting drugs out of cancer cells. However, the relationship between ECM stiffness and MRP1 functional activity in cancer cells remains elusive, mainly due to the technical challenge of in situ monitoring. Herein, we engineered in vitro cancer cell models using breast cancer cells (MCF-7 and MDA-MB-231 cells) as the reprehensive cells on polyacrylamide (PA) gels with three stiffness, mimicking different developmental stages of cancer. We in situ characterized the functional activity of MRP1 and investigated the effect of ECM stiffness on MRP1 of cancer cells before and after vincristine treatment using scanning electrochemical microscopy (SECM) with ferrocenecarboxylic acid (FcCOOH) as the redox mediator and endogenous glutathione (GSH) as the indicator. The SECM results show that the functional activity of MRP1 is enhanced with increasing ECM stiffness, and the MRP1-mediated vincristine efflux activity of MCF-7 cells is more affected by ECM stiffness than that of MDA-MB-231 cells. This work, for the first time, applied SECM to in situ and quantitatively monitor the functional activity of MRP1 in cancer cells in different tumor mechanical microenvironments, which could help to elucidate the mechanism of matrix stiffness-dependent drug resistance behavior in cancer cells.

SECM using FcCOOH as the redox mediator and endogenous GSH as the indicator was employed to investigate the effect of extracellular matrix stiffness on the functional activity of MRP1 in cancer cells in situ.  相似文献   
103.
Small-molecule near-infrared (NIR) imaging facilitates deep tissue penetration, low autofluorescence, non-invasive visualization, and a relatively simple operation. As such it has emerged as a popular technique for tracking biological species and events. However, the small Stokes shift of most NIR dyes often results in a low signal-to-noise ratio and self-quenching due to crosstalk between the excitation and emission spectra. With this research, we developed a NIR-based fluorescent probe WD-HOCl for hypochlorous acid (HOCl) detection using the NIR dye TJ730 as the fluorophore, which exhibits a large Stokes shift of 156 nm, with no crosstalk between the excitation and emission spectra. It contains acyl hydrazide as the responsive group and a pyridinium cation as the mitochondria-targeting group. The fluorescence intensity of WD-HOCl was enhanced by 30.1-fold after reacting with HOCl. Imaging studies performed using BV-2 cells indicated that WD-HOCl could be used for endogenous HOCl detection and imaging in living cells exposed to glucose and oxygen deprivation/reperfusion. Finally, we demonstrated that inhibiting the expression of NOX2 reduced the HOCl levels and the severity of oxidative stress during stroke in a mouse model.

Small-molecule near-infrared (NIR) imaging facilitates deep tissue penetration, low autofluorescence, non-invasive visualization, and a relatively simple operation.  相似文献   
104.
Numerous experiments have revealed that fullerene (C60) and its derivatives can bind to proteins and affect their biological functions. In this study, we explored the interaction between fullerine and the β2-adrenergic receptor (β2AR). The MD simulation results show that fullerene binds with the extracellular loop 2 (ECL2) and intracellular loop 2 (ICL2) of β2AR through hydrophobic interactions and π–π stacking interactions. In the C60_in1 trajectory, due to the π–π stacking interactions of fullerene molecules with PHE and PRO residues on ICL2, ICL2 completely flipped towards the fullerene direction and the fullerene moved slowly into the lipid membrane. When five fullerene molecules were placed on the extracellular side, they preferred to stack into a stable fullerene cluster (a deformed tetrahedral aggregate), and had almost no effect on the structure of β2AR. The hydroxyl groups of fullerene derivatives (C60(OH)X, X represents the number of hydroxyl groups, X = 4, 8) can form strong hydrogen bonds with the ECL2, helix6, and helix7 of β2AR. The hydroxyl groups firmly grasp the β2AR receptor like several claws, blocking the binding entry of ligands. The simulation results show that fullerene and fullerene derivatives may have a significant effect on the local structure of β2AR, especially the distortion of helix4, but bring about no great changes within the overall structure. It was found that C60 did not compete with ligands for binding sites, but blocked the ligands’ entry into the pocket channel. All the above observations suggest that fullerene and its derivatives exhibit certain cytotoxicity.  相似文献   
105.
As the most advanced aerogel material, silica aerogel has had transformative industrial impacts. However, the use of silica aerogel is currently limited to the field of thermal insulation materials, so it is urgent to expand its application into other fields. In this work, silica aerogel/resin composites were successfully prepared by combining silica aerogel with a resin matrix for dental restoration. The applications of this material in the field of dental restoration, as well as its performance, are discussed in depth. It was demonstrated that, when the ratio of the resin matrix Bis-GMA to TEGDMA was 1:1, and the content of silica aerogel with 50 μm particle size was 12.5%, the composite achieved excellent mechanical properties. The flexural strength of the silica aerogel/resin composite reached 62.9546 MPa, which was more than five times that of the pure resin. Due to the presence of the silica aerogel, the composite also demonstrated outstanding antibacterial capabilities, meeting the demand for antimicrobial properties in dental materials. This work successfully investigated the prospect of using commercially available silica aerogels in dental restorative materials; we provide an easy method for using silica aerogels as dental restorative materials, as well as a reference for their application in the field of biomedical materials.  相似文献   
106.
In this paper, we consider the optimization of the quantum circuit for discrete logarithm of binary elliptic curves under a constrained connectivity, focusing on the resource expenditure and the optimal design for quantum operations such as the addition, binary shift, multiplication, squaring, inversion, and division included in the point addition on binary elliptic curves. Based on the space-efficient quantum Karatsuba multiplication, the number of CNOTs in the circuits of inversion and division has been reduced with the help of the Steiner tree problem reduction. The optimized size of the CNOTs is related to the minimum degree of the connected graph.  相似文献   
107.
Electrical double-laye r capacitors are widely concerned fo r their high power density,long cycling life and high cycling efficiency.However,their wide application is limited by their low energy density.In this study,we propose a simple yet environmental friendly method to synthesize cobalt and nitrogen atoms co-doped porous carbon(CoAT-NC) material.Cobalt atoms connected with primarily pyridinic nitrogen atoms can be uniformly dispersed in the amorphous carbon matrix,which is benefit for improving electrical conductivity and density of states of the carbon material.Therefore,an enhanced perfo rmance is expected when CoAT-NC is served as electrode in a supercapacitor device.CoAT-NC displays a good gravimetric capacitance of 160 F/g at 0.5 A/g combing with outstanding capacitance retention of 90% at an extremely high current density of 100 A/g in acid electrolyte.Furthermore,a good energy density of30 Wh/kg can be obtained in the organic electrolyte.  相似文献   
108.
Information-rich molecules provide opportunities for evolution. Genetically engineered materials are superior in that their properties are coded within genetic sequences and could be fine-tuned. In this review, we elaborate the concept of genetically engineered materials(GEMs) using examples ranging from engineered protein materials to engineered living materials. Proteinbased materials are the materials of choice by nature. Recent progress in protein engineering has led to opportunities to tune...  相似文献   
109.
采用超滤浓缩、强阴离子交换、疏水作用和凝胶色谱等方法, 对毕赤酵母表达的rGlip进行分离和纯化, 对离子交换色谱中rGlip与固相结合的最佳pH值进行了考察, 并对纯化产物的活性进行了鉴定. rGlip在215 nm处有强的紫外吸收, 经激光解析电离时间飞行质谱鉴定其相对分子量为12722, 经反相液相色谱鉴定纯度≥97%. 设计rGlip的疏水作用色谱, 有效地去除色素. 凝血实验结果表明, rGlip可以凝集绵羊血红细胞, 但对人血A, B, AB和O型等红细胞无凝集作用, 有类似凝集素的生物学活性.  相似文献   
110.
通过实验观测了微波硫灯的发光光谱. 利用从头计算的多组态准简并微扰理论方法, 采用cc-pVQZ基组计算了S2分子B3Σu--X3Σg-态和B″3Πu-X3Σg-态的跃迁矩及其振动态之间跃迁的弗兰克-康登因子, 导出了S2分子振动分辨发射谱. 同时, 利用含时密度泛函方法计算了Sn(n=2~8)分子的吸收谱. 将计算得到的S2分子振动分辨发射谱与实验所测得的光谱分布进行了比较分析, 解释了微波硫灯的宽谱区发光光谱的特性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号