首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1002篇
  免费   46篇
  国内免费   21篇
化学   816篇
晶体学   12篇
力学   31篇
数学   74篇
物理学   136篇
  2024年   12篇
  2023年   13篇
  2022年   108篇
  2021年   71篇
  2020年   50篇
  2019年   37篇
  2018年   39篇
  2017年   26篇
  2016年   45篇
  2015年   32篇
  2014年   45篇
  2013年   56篇
  2012年   79篇
  2011年   82篇
  2010年   41篇
  2009年   38篇
  2008年   39篇
  2007年   41篇
  2006年   32篇
  2005年   38篇
  2004年   18篇
  2003年   17篇
  2002年   14篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   8篇
  1996年   8篇
  1995年   5篇
  1994年   2篇
  1993年   6篇
  1991年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   5篇
  1975年   5篇
  1973年   4篇
  1972年   5篇
  1970年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有1069条查询结果,搜索用时 0 毫秒
21.
In this research, a new biodegradable and eco-friendly adsorbent, starch-grafted polymethyl methacrylate (St-g-PMMA) was synthesized. The St-g-PMMA was synthesized by a free radical polymerization reaction in which methyl methacrylate (MMA) was grafted onto a starch polymer chain. The reaction was performed in water in the presence of a potassium persulfate (KPS) initiator. The structure and different properties of the St-g-PMMA was explored by FT-IR, 1H NMR, TGA, SEM and XRD. After characterization, the St-g-PMMA was used for the removal of MB dye. Different adsorption parameters, such as effect of adsorbent dose, effect of pH, effect of initial concentration of dye solution, effect of contact time and comparative adsorption study were investigated. The St-g-PMMA showed a maximum removal percentage (R%) of 97% towards MB. The other parameters, such as the isothermal and kinetic models, were fitted to the experimental data. The results showed that the Langmuir adsorption and pseudo second order kinetic models were best fitted to experimental data with a regression coefficient of R2 = 0.93 and 0.99, respectively.  相似文献   
22.
A brand-new nano-crystal (NC) version of the hydrophobic drug Paclitaxel (PT) were formulated for cancer treatment. A stable NC formulation for the administration of PT was created using the triblock co-polymer Pluronic F127. To achieve maximum entrapment effectiveness and minimal particle size, the formulation was improved using the central composite design by considering agitation speed and vacuum pressure at five levels (coded as +1.414, +1, 0, −1, and −1.414). According to the Design Expert software’s predictions, 13 runs were created and evaluated for the chosen responses. The formulation prepared with an agitation speed of 1260 RPM and a vacuum pressure of 77.53 mbar can meet the requirements of the ideal formulation in order to achieve 142.56 nm of PS and 75.18% EE, according to the level of desirability (D = 0.959). Folic acid was conjugated to Pluronic F127 to create folate receptor-targeted NC. The drug release profile of the nano-crystals in vitro demonstrated sustained release over an extended period. Folate receptor (FR)-targeted NC (O-PT-NC-Folate) has also been prepared by conjugating folic acid to Pluronic F127. MTT test is used to validate the targeting efficacy on the FR-positive human oral cancer cell line (KB). At pharmacologically relevant concentrations, the PT nano-crystal formulation did not cause hemolysis. Compared to non-targeted NC of PT, the O-PT-NC-Folate showed a comparable but more sustained anti-cancer effect, according to an in vivo anti-tumor investigation in NCI/ADR-RES cell lines. The remarkable anti-tumor effectiveness, minimal toxicity, and simplicity of scale-up manufacturing of the NC formulations indicate their potential for clinical development. Other hydrophobic medications that are formulated into nano-systems for improved therapy may benefit from the formulation approach.  相似文献   
23.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronaviruses that emerged in China at Wuhan city, Hubei province during December 2019. Subsequently, SARS-CoV-2 has spread worldwide and caused millions of deaths around the globe. Several compounds and vaccines have been proposed to tackle this crisis. Novel recommended in silico approaches have been commonly used to screen for specific SARS-CoV-2 inhibitors of different types. Herein, the phytochemicals of Pakistani medicinal plants (especially Artemisia annua) were virtually screened to identify potential inhibitors of the SARS-CoV-2 main protease enzyme. The X-ray crystal structure of the main protease of SARS-CoV-2 with an N3 inhibitor was obtained from the protein data bank while A. annua phytochemicals were retrieved from different drug databases. The docking technique was carried out to assess the binding efficacy of the retrieved phytochemicals; the docking results revealed that several phytochemicals have potential to inhibit the SARS-CoV-2 main protease enzyme. Among the total docked compounds, the top-10 docked complexes were considered for further study and evaluated for their physiochemical and pharmacokinetic properties. The top-3 docked complexes with the best binding energies were as follows: the top-1 docked complex with a −7 kcal/mol binding energy score, the top-2 docked complex with a −6.9 kcal/mol binding energy score, and the top-3 docked complex with a −6.8 kcal/mol binding energy score. These complexes were subjected to a molecular dynamic simulation analysis for further validation to check the dynamic behavior of the selected top-complexes. During the whole simulation time, no major changes were observed in the docked complexes, which indicated complex stability. Additionally, the free binding energies for the selected docked complexes were also estimated via the MM-GB/PBSA approach, and the results revealed that the total delta energies of MMGBSA were −24.23 kcal/mol, −26.38 kcal/mol, and −25 kcal/mol for top-1, top-2, and top-3, respectively. MMPBSA calculated the delta total energy as −17.23 kcal/mol (top-1 complex), −24.75 kcal/mol (top-2 complex), and −24.86 kcal/mol (top-3 complex). This study explored in silico screened phytochemicals against the main protease of the SARS-CoV-2 virus; however, the findings require an experimentally based study to further validate the obtained results.  相似文献   
24.
Psidium guajava L. (guava) is a small tree known for its fruit flavor that is cultivated almost around the globe in tropical areas. Its fruit is amazingly rich in antioxidants, vitamin C, potassium, and dietary fiber. In different parts of the world, this plant holds a special place with respect to fruit and nutritional items. Pharmacological research has shown that this plant has more potential than just a fruit source; it also has beneficial effects against a variety of chronic diseases due to its rich nutritional and phytochemical profile. The primary goal of this document is to provide an updated overview of Psidium guajava L. and its bioactive secondary metabolites, as well as their availability for further study, with a focus on the health benefits and potential industrial applications. There have been several studies conducted on Psidium guajava L. in relation to its use in the pharmaceutical industry. However, its clinical efficacy and applications are still debatable. Therefore, in this review a detailed study with respect to phytochemistry of the plant through modern instruments such as GC and LC-MS has been discussed. The biological activities of secondary metabolites isolated from this plant have been extensively discussed. In order to perform long-term clinical trials to learn more about their effectiveness as drugs and applications for various health benefits, a structure activity relationship has been established. Based on the literature, it is concluded that this plant has a wide variety of biopharmaceutical applications. As a whole, this article calls for long-term clinical trials to obtain a greater understanding of how it can be used to treat different diseases.  相似文献   
25.
Erosive beverages cause dissolution of natural teeth and intra-oral restorations, resulting in surface characteristic changes, particularly roughness and degradation. The purpose of this study was to evaluate the surface roughness and topography of a dental ceramic following immersion in locally available erosive solutions. A total of 160 disc specimens of a nano-fluorapatite type ceramic (12 mm diameter and 2 mm thickness) were fabricated and equally distributed into two groups (n = 80) and then evenly distributed among the following five testing groups (n = 16): lemon juice, citrate buffer solution, 4% acetic acid, soft cola drink, and distilled water which served as a control. The surface roughness (Ra) and topography were evaluated using a profilometer and scanning electron microscope at baseline, 24 h, 96 h, and 168 h respectively. Data were analyzed using ANOVA and Tukey’s multiple comparisons (p ≤ 0.05). Surface changes were observed upon exposure to all acidic beverages except distilled water. Amongst all immersion media, 4% acetic acid produced the most severe surface roughness across all time periods (i.e., baseline, 24 h, 96 h, and 168 h). A statistically significant difference in the surface roughness values between all immersion media and across all four time intervals was observed. Erosive agents had a negative effect on the surface roughness and topography of the tested ceramic. The surface roughness increased with increased storage time intervals.  相似文献   
26.
(1) Background: Achillea mellifolium belongs to a highly reputed family of medicinal plants, with plant extract being used as medicine in indigenous system. However, limited data is available regarding the exploitation of the medicinal potential of isolated pure compounds from this family; (2) Methods: A whole plant extract was partitioned into fractions and on the basis of biological activity, an ethyl acetate fraction was selected for isolation of pure compounds. Isolated compounds were characterized using different spectroscopic techniques. The compounds isolated from this study were tested for their medicinal potential using in-vitro enzyme assay, coupled with in-silico studies; (3) Results: Three new acrylic acid derivatives (1–3) have been isolated from the ethyl acetate fraction of Achillea mellifolium. The characterization of these compounds (1–3) was carried out using UV/Vis, FT-IR, 1D and 2D-NMR spectroscopy (1H-NMR, 13C-NMR, HMBC, NOESY) and mass spectrometry. These acrylic acid derivatives were further evaluated for their enzyme inhibition potential against urease from jack bean and α glucosidase from Saccharomyces cerevisiae, using both in-silico and in-vitro approaches. In-vitro studies showed that compound 3 has the highest inhibition against urease enzyme (IC50 =10.46 ± 0.03 μΜ), followed by compound 1 and compound 2 with percent inhibition and IC50 value of 16.87 ± 0.02 c and 13.71 ± 0.07 μΜ, respectively, compared to the standard (thiourea-IC50 = 21.5 ± 0.01 μΜ). The investigated IC50 value of compound 3 against the urease enzyme is two times lower compared to thiourea, suggesting that this compound is twice as active compared to the standard drug. On the other hand, all three compounds (1–3) revealed mild inhibition potential against α-glucosidase. In-silico molecular docking studies, in combination with MD simulations and free energy, calculations were also performed to rationalize their time evolved mode of interaction inside the active pocket. Binding energies were computed using a MMPBSA approach, and the role of individual residues to overall binding of the inhibitors inside the active pockets were also computed; (4) Conclusions: Together, these studies confirm the inhibitory potential of isolated acrylic acid derivatives against both urease and α-glucosidase enzymes; however, their inhibition potential is better for urease enzyme even when compared to the standard.  相似文献   
27.
Herein, we report that short peptides are capable of exploiting their anti-parallel registry to access cross-β stacks to expose more than one catalytic residue, exhibiting the traits of advanced binding pockets of enzymes. Binding pockets decorated with more than one catalytic residue facilitate substrate binding and process kinetically unfavourable chemical transformations. The solvent-exposed guanidinium and imidazole moieties on the cross-β microphases synergistically bind to polarise and hydrolyse diverse kinetically stable model substrates of nucleases and phosphatase. Mutation of either histidine or arginine results in a drastic decline in the rate of hydrolysis. These results not only support the argument of short amyloid peptides as the earliest protein folds but also suggest their interactions with nucleic acid congeners, foreshadowing the mutualistic biopolymer relationships that fueled the chemical emergence of life.

Amyloid based short peptide assemblies use antiparallel registry to expose multiple catalytic residues to bind and cleave kinetically stable phosphoester bonds of nucleic acid congeners, foreshadowing interactions of protein folds with nucleic acids.  相似文献   
28.
New furan-based derivatives have been, designed, synthesized, and evaluated for their cytotoxic and tubulin polymerization inhibitory activities. DNA flow cytometric study of pyridine carbohydrazide 4 and N-phenyl triazinone 7 demonstrated G2/M phase cell cycle disruptions. Accumulation of cells in the pre-G1 phase and positive annexin V/PI staining, which may be caused by degeneration or fragmentation of the genetic components, suggested that cell death occurs via an apoptotic cascade. Furthermore, compounds 4 and 7 had a strong pro-apoptotic impact through inducing the intrinsic mitochondrial mechanism of apoptosis. This mechanistic route was verified by an ELISA experiment that indicated a considerable rise in the levels of p53 and Bax and a drop in the level of Bcl-2 when compared with the control.  相似文献   
29.
30.
A novel series of amides based TMP moiety was designed, synthesized and evaluated for their antiproliferative as well as enzyme inhibition activity. Compounds 6a and 6b showed remarkable cytotoxic activity against HepG2 cells with IC50 values 0.65 and 0.92 μM, respectively compared with SAHA and CA-4 as reference compounds. In addition, compound 6a demonstrated good HDAC-tubulin dual inhibition activity as it showed better HDAC activity as well as anti-tubulin activity. Moreover, compound 6a exhibited G2/M phase arrest and pre-G1 apoptosis as demonstrated by cell cycle analysis and Annexin V assays. Further apoptosis studies demonstrated that compound 6a boosted the level of caspase 3/7. Caspase 3/7 activation and apoptosis induction were evidenced by decrease in mitochondrial permeability suggesting that activation of caspase 3/7 may occur via mitochondrial apoptotic pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号