首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2109篇
  免费   134篇
  国内免费   2篇
化学   1565篇
晶体学   4篇
力学   45篇
综合类   1篇
数学   296篇
物理学   334篇
  2023年   32篇
  2022年   25篇
  2021年   35篇
  2020年   61篇
  2019年   39篇
  2018年   28篇
  2017年   25篇
  2016年   96篇
  2015年   90篇
  2014年   89篇
  2013年   122篇
  2012年   127篇
  2011年   123篇
  2010年   91篇
  2009年   74篇
  2008年   111篇
  2007年   116篇
  2006年   106篇
  2005年   101篇
  2004年   88篇
  2003年   72篇
  2002年   42篇
  2001年   33篇
  2000年   32篇
  1999年   29篇
  1998年   19篇
  1997年   18篇
  1996年   13篇
  1995年   8篇
  1994年   17篇
  1993年   9篇
  1992年   18篇
  1991年   15篇
  1990年   8篇
  1988年   12篇
  1987年   7篇
  1986年   8篇
  1985年   17篇
  1984年   20篇
  1983年   13篇
  1982年   28篇
  1981年   19篇
  1980年   25篇
  1979年   17篇
  1978年   14篇
  1977年   17篇
  1976年   16篇
  1975年   23篇
  1974年   13篇
  1973年   10篇
排序方式: 共有2245条查询结果,搜索用时 31 毫秒
61.
Enantiomerically pure (S)-mandelic acid was synthesised from benzaldehyde by sequential hydrocyanation and hydrolysis in a bienzymatic cascade at starting concentrations up to 0.25 M. A cross-linked enzyme aggregate (CLEA) composed of the (S)-selective oxynitrilase from Manihot esculenta and the non-selective nitrilase from Pseudomonas fluorescens EBC 191 was employed as the biocatalyst. The nitrilase produces approx. equal amounts of (S)-mandelic acid and (S)-mandelic amide from (S)-mandelonitrile under standard conditions, but we surprisingly found that high (up to 0.5 M) concentrations of HCN induced a marked drift towards amide production. By including the amidase from Rhodococcus erythopolis in the CLEA we obtained (S)-mandelic acid as the sole product in 90% yield and >99% enantiomeric purity.  相似文献   
62.
63.
A novel approach to locate, identify and refine positions and whole areas of cell structures based on elemental contents measured by X‐ray fluorescence microscopy is introduced. It is shown that, by initializing with only a handful of prototypical cell regions, this approach can obtain consistent identification of whole cells, even when cells are overlapping, without training by explicit annotation. It is robust both to different measurements on the same sample and to different initializations. This effort provides a versatile framework to identify targeted cellular structures from datasets too complex for manual analysis, like most X‐ray fluorescence microscopy data. Possible future extensions are also discussed.  相似文献   
64.
65.
A confidence interval for the probability of detection across laboratories (LPOD) for qualitative methods, described in the AOAC INTERNATIONAL guidelines for validation of microbiological methods for food and environmental surfaces, is considered. It is demonstrated that under certain conditions, the observed confidence of this confidence interval can be rather low, so that statistical minimum requirements are not fulfilled. A new profile likelihood confidence interval based on a latent random laboratory effect approach is proposed. Observed confidence levels for this confidence interval demonstrate its applicability already for a small number of laboratories.  相似文献   
66.
We present a fixed‐grid finite element technique for fluid–structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b‐spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision‐stabilisation technique is used to ensure inf–sup stability. The beam equations are discretised with b‐splines and the shell equations with subdivision basis functions, both leading to a rotation‐free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet–Robin partitioning scheme, and the fluid equations are solved with a pressure–correction method. Auxiliary techniques employed for improving numerical robustness include the level‐set based implicit representation of the structure interface on the fluid grid, a cut‐cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号