首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809篇
  免费   20篇
  国内免费   14篇
化学   485篇
晶体学   7篇
力学   42篇
数学   119篇
物理学   190篇
  2023年   6篇
  2022年   16篇
  2021年   16篇
  2020年   19篇
  2019年   16篇
  2018年   23篇
  2017年   14篇
  2016年   21篇
  2015年   17篇
  2014年   30篇
  2013年   47篇
  2012年   66篇
  2011年   53篇
  2010年   36篇
  2009年   29篇
  2008年   45篇
  2007年   47篇
  2006年   52篇
  2005年   38篇
  2004年   23篇
  2003年   36篇
  2002年   22篇
  2001年   12篇
  2000年   5篇
  1999年   8篇
  1998年   7篇
  1997年   8篇
  1996年   6篇
  1994年   7篇
  1993年   9篇
  1992年   9篇
  1991年   3篇
  1990年   9篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   6篇
  1974年   3篇
  1973年   4篇
  1970年   3篇
  1969年   3篇
  1968年   5篇
  1961年   4篇
  1960年   4篇
  1958年   3篇
  1948年   3篇
排序方式: 共有843条查询结果,搜索用时 10 毫秒
21.
The speed of sound and density of 2-hydroxy-5-methyl acetophenone in dimethylformamide have been measured over the range of temperatures 25–40 °C. From the experimentally determined data, values of apparent molar volume (V ϕ), adiabatic compressibility (βs), apparent molar adiabatic compressibility (K s,ϕ) and their limiting values have been computed. Values at infinite dilution provide information regarding solute–solvent interaction. The density and velocity increases with increase in concentration and decreases with increase in temperature. These results have been analyzed in terms of molecular interactions between acetophenone and dimethylformamide.  相似文献   
22.
High efficiency and less run time are the basic requirements of high-speed chromatographic separations. To fulfill these requirements, a new separation technique, ultra-performance liquid chromatography (UPLC), has shown promising developments. A rapid, specific, sensitive, and precise reverse-phase UPLC method is developed for the determination of nabumetone in tablet dosage form. In this work, a new isocratic chromatographic method is developed. The newly developed method is applicable for assay determination of the active pharmaceutical ingredient. The chromatographic separation is achieved on a Waters Acquity BEH column (100 mm, i.d., 2.1 mm, 1.7 μm) within a short runtime of 2 min using a mobile phase of 5 mM ammonium acetate-acetonitrile (25:75, v/v), at a flow rate of 0.3 mL/min at an ambient temperature. Quantification is achieved with photodiode array detection at 230 nm, over the concentration range of 0.05-26 μg/mL. Forced degradation studies are also performed for nabumetone bulk drug samples to demonstrate the stability-indicating power of the UPLC method. Comparison of system performance with conventional high-performance liquid chromatography is made with respect to analysis time, efficiency, and sensitivity. The method is validated according to the ICH guidelines and is applied successfully for the determination of nabumetone in tablets.  相似文献   
23.
Chemiluminescent acridinium dimethylphenyl ester labels are used in automated immunoassays for clinical diagnostics. Light emission from these labels is triggered by alkaline peroxide in the presence of the cationic surfactant cetyltrimethylammonium chloride (CTAC). The surfactant plays a critical role in the chemiluminescence process of these labels by both accelerating their emission kinetics and increasing total light output enabling high throughout and improved assay sensitivity in automated immunoassays. Despite the surfactant's crucial role in the chemiluminescent reaction, no study has investigated how structural perturbations in the acridinium ring could impact the influence of the surfactant. We describe herein the synthesis and properties of three new alkoxy-substituted, acridinium dimethylphenyl esters where the nature of the alkoxy group in the acridinium ring was varied (hydrophobic or hydrophilic). Chemiluminescence measurements of these alkoxy-substituted labels indicate that hydrophilic functional groups in the acridinium ring, in particular sulfobetaine zwitterions, disrupt surfactant-mediated compression of emission times but not enhancement of light yield. These results support the hypothesis that surfactant-mediated effects require the binding of two different reaction intermediates to surfactant aggregates and, that surfactants influence light emission from acridinium esters by two separate mechanisms. Our studies also indicate that preservation of both surfactant effects on acridinium ester chemiluminescence and low non-specific binding of the label can be achieved with a relatively hydrophobic acridinium ring coupled to a hydrophilic phenolic ester leaving group.  相似文献   
24.
25.
Catalysts with tunable porosity, crystallinity and acidity can selectively produce aviation fuels and road transportation fuels via hydroprocessing of non-edible oils. Here we discuss several catalyst supports—mesoporous alumina, silica–alumina and hierarchical mesoporous zeolites, developed and used as support for hydroprocessing catalysts (Ni–Mo, Co–Mo, Ni–W), for the selective production of transportation fuels. These developed catalysts were used for the hydroconversion of waste cooking-oil, jatropha-oil, algal-oil and their mixtures with petroleum refinery oils. The physicochemical properties of the catalyst were tuned for optimal performance on the basis of evaluation results on high pressure fixed bed microreactors and pilot scale reactors. These studies targeted the production of transportation fuels (gasoline, kerosene and diesel) by hydroprocessing (hydrotreating or hydrocracking) renewable feed stocks or co-processing with fossil based oils. Modelling and process optimization studies for prediction of kinetic rate parameters and to know the reaction pathways for the conversion of these feed stocks to various range of hydrocarbon fuels, were also carried out. These studies provided the vital information that the reaction pathways were temperature dependent.  相似文献   
26.
27.
The W/O xanthan fermentation is simulated by integrating the microbial kinetic behaviors and the multiple-phase process characteristics. Model 1 assumes uniform redistribution of cells, substrates and product by frequent droplet breakup and coalescence. Model 2 simulates the system of viscous aqueous phase with minimal droplet breakup and component redistribution. The real fermentation should proceed within the bounds set by the two models. Effects of various parameters are evaluated. The aqueous-phase xanthan concentration (Xn) and volumetric productivity (QP) achieved at 200 h are used as the indicators. Xn and QP increase with nitrogen-source concentration (SNO) initially but plateau (Model 1) or decrease slightly (Model 2) at high SNO. Xn (at 200 h) decreases with increasing aqueous-phase volume fraction (f). QP, however, increases with f reflecting its basing on the total dispersion volume. Increasing agitation and aeration result in higher Xn and QP. The higher agitation enhances the G/O interfacial oxygen transfer and reduces the droplet size. Increasing aeration improves the G/O interfacial transfer but increases the droplet size. Its net positive effect implies a rate-limiting step at G/O interface. The W/O fermentation can produce far higher Xn (> 200 kg/m3) and QP( > 0.8 kg/m3-h) than the conventional fermentation (Xn ~ 50 kg/m3, QP ~ 0.5 kg/m3-h).  相似文献   
28.
Modified octaphyrins with 34pi electrons have been synthesized and characterized following a simple synthetic methodology. An acid-catalyzed alpha,alpha coupling of tetrapyrranes containing furan, thiophene and selenophene rings resulted in the formation of the respective octaphyrins in relatively good yield. Solution studies by (1)H NMR and 2D NMR methods and single crystal Xray structural characterization reveal an almost flat structure with two heterocyclic rings inverted. Specifically, in 14 two selenophene rings (one on each biselenophene unit) are inverted while in 15 two furan rings (one on each bifuran unit) are inverted when the meso substituent are mesityl groups. On changing the mesityl substituent to m-xylyl group as in 19, the location of ring inversion shifts to pyrrole rings (one on each bipyrrole unit) indicating the dependence of structure on the meso substituents. UV/Vis studies, both in freebase and protonated forms reveal typical porphyrinic character and the aromatic nature of the octaphyrins. The Deltadelta values evaluated by (1)H NMR spectroscopy also support their aromatic nature. The protonated forms of octaphyrins bind TFA anion in a 1:2 ratio. The TFA anions are located one above and below the plane of the octaphyrin macrocycle and they are held by weak electrostatic NH-O interactions similar to that observed for protonated rubyrins. However, in the present case, there is an additional non-electrostatic CH-O interaction involving beta-CH of the inverted heterocyclic ring and the carbonyl oxygen of the TFA. Furthermore, inter molecular interactions between the Cbond;H of the meso-mesityl group and the fluorine of CF(3) group of bound TFA leads to the formation of one-dimensional supramolecular arrays with interplanar distance of 13 A between two octaphyrins.  相似文献   
29.
The reaction of the open bioctahedral form of Re(2)Cl(4)(&mgr;-dppm)(2)(CO)(CNXyl) (1), where XylNC = 2,6-dimethylphenyl isocyanide, with TlO(3)SCF(3) in the presence of acetonitrile proceeds with retention of stereochemistry at the dirhenium unit to afford the complex [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(NCCH(3))]O(3)SCF(3) (3). The single-crystal X-ray structure determination of 3 shows that a Re&tbd1;Re bond is retained (the Re-Re distance is 2.378(3) ?) and that it is the chloride ligand trans to the XylNC ligand of 1 which is labilized. Complex 1 reacts with TlO(3)SCF(3) in a noncoordinating solvent to produce the unsymmetrical complex [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)]O(3)SCF(3) (2), through loss of this same chloride ligand of 1 and CO transfer from the adjacent Re center. The acetonitrile ligand of 3 is very labile and is readily displaced by XylNC and t-BuNC, with retention of stereochemistry, to produce complexes of stoichiometry [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(CNR)]O(3)SCF(3) (R = Xyl, 4a; R = t-Bu, 4b). In a noncoordinating solvent, the nitrile ligand of 3 is lost and 2 is formed following CO transfer; this conversion is reversed upon the reaction of 2 with acetonitrile. When 3 is treated with CO, the acetonitrile ligand is again displaced, but in this instance the reaction is accompanied by a structure change to produce an edge-sharing bioctahedral complex of the type [Re(2)(&mgr;-CO)(&mgr;-Cl)(&mgr;-dppm)(2)Cl(2)(CO)(CNXyl)]O(3)SCF(3) (5).  相似文献   
30.
The design and fabrication of a self‐digitization dielectrophoretic (SD‐DEP) chip with simple components for single‐cell manipulation and downstream nucleic acid analysis is presented. The device employed the traditional DEP and insulator DEP to create the local electric field that is tailored to approximately the size of single cells, enabling highly efficient single‐cell capture. The multistep procedures of cell manipulation, compartmentalization, lysis, and analysis were performed in the integrated microdevice, consuming minimal reagents, minimizing contamination, decreasing lysate dilution, and increasing assay sensitivity. The platform developed here could be a promising and powerful tool in single‐cell research for precise medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号