首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2353篇
  免费   101篇
  国内免费   15篇
化学   1703篇
晶体学   40篇
力学   49篇
数学   136篇
物理学   541篇
  2024年   17篇
  2023年   21篇
  2022年   68篇
  2021年   80篇
  2020年   82篇
  2019年   94篇
  2018年   42篇
  2017年   36篇
  2016年   89篇
  2015年   87篇
  2014年   95篇
  2013年   138篇
  2012年   185篇
  2011年   228篇
  2010年   120篇
  2009年   116篇
  2008年   158篇
  2007年   137篇
  2006年   125篇
  2005年   111篇
  2004年   90篇
  2003年   70篇
  2002年   71篇
  2001年   33篇
  2000年   41篇
  1999年   23篇
  1998年   19篇
  1997年   8篇
  1996年   13篇
  1995年   12篇
  1994年   12篇
  1993年   10篇
  1992年   6篇
  1991年   9篇
  1990年   10篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1982年   1篇
  1972年   1篇
排序方式: 共有2469条查询结果,搜索用时 140 毫秒
1.
2.
Analysis of the T-cell receptor (TCR) repertoire of innate CD4+ T cells selected by major histocompatibility complex (MHC) class II-dependent thymocyte–thymocyte (T-T) interaction (T-T CD4+ T cells) is essential for predicting the characteristics of the antigens that bind to these T cells and for distinguishing T-T CD4+ T cells from other types of innate T cells. Using the TCRmini Tg mouse model, we show that the repertoire of TCRα chains in T-T CD4+ T cells was extremely diverse, in contrast to the repertoires previously described for other types of innate T cells. The TCRα chain sequences significantly overlapped between T-T CD4+ T cells and conventional CD4+ T cells in the thymus and spleen. However, the diversity of the TCRα repertoire of T-T CD4+ T cells seemed to be restricted compared with that of conventional CD4+ T cells. Interestingly, the frequency of the parental OT-II TCRα chains was significantly reduced in the process of T-T interaction. This diverse and shifted repertoire in T-T CD4+ T cells has biological relevance in terms of defense against diverse pathogens and a possible regulatory role during peripheral T-T interaction.  相似文献   
3.
4.
5.
Scientific interest in atomically controlled layer-by-layer fabrication of transition metal oxide thin films and heterostructures has increased intensely in recent decades for basic physics reasons as well as for technological applications. This trend has to do, in part, with the coming post-Moore era, and functional oxide electronics could be regarded as a viable alternative for the current semiconductor electronics. Furthermore, the interface of transition metal oxides is exposing many new emergent phenomena and is increasingly becoming a playground for testing new ideas in condensed matter physics. To achieve high quality epitaxial thin films and heterostructures of transition metal oxides with atomically controlled interfaces, one critical requirement is the use of atomically flat single terminated oxide substrates since the atomic arrangements and the reaction chemistry of the topmost surface layer of substrates determine the growth and consequent properties of the overlying films. Achieving the atomically flat and chemically single terminated surface state of commercially available substrates, however, requires judicious efforts because the surface of as-received substrates is of chemically mixed nature and also often polar. In this review, we summarize the surface treatment procedures to accomplish atomically flat surfaces with single terminating layer for various metal oxide substrates. We particularly focus on the substrates with lattice constant ranging from 4.00 Å to 3.70 Å, as the lattice constant of most perovskite materials falls into this range. For materials outside the range, one can utilize the substrates to induce compressive or tensile strain on the films and explore new states not available in bulk. The substrates covered in this review, which have been chosen with commercial availability and, most importantly, experimental practicality as a criterion, are KTaO3, REScO3 (RE = Rare-earth elements), SrTiO3, La0.18Sr0.82Al0.59Ta0.41O3 (LSAT), NdGaO3, LaAlO3, SrLaAlO4, and YAlO3. Analyzing all the established procedures, we conclude that atomically flat surfaces with selective A- or B-site single termination would be obtained for most commercially available oxide substrates. We further note that this topmost surface layer selectivity would provide an additional degree of freedom in searching for unforeseen emergent phenomena and functional applications in epitaxial oxide thin films and heterostructures with atomically controlled interfaces.  相似文献   
6.
Obesity is a growing global epidemic that can cause serious adverse health consequences, including insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD). Obesity development can be attributed to energy imbalance and metabolic inflexibility. Here, we demonstrated that lack of Kelch-like protein 3 (KLHL3) mitigated the development of obesity, IR, and NAFLD by increasing energy expenditure. KLHL3 mutations in humans cause Gordon’s hypertension syndrome; however, the role of KLHL3 in obesity was previously unknown. We examined differences in obesity-related parameters between control and Klhl3−/− mice. A significant decrease in body weight concomitant with fat mass loss and improved IR and NAFLD were observed in Klhl3−/− mice fed a high-fat (HF) diet and aged. KLHL3 deficiency inhibited obesity, IR, and NAFLD by increasing energy expenditure with augmentation of O2 consumption and CO2 production. Delivering dominant-negative (DN) Klhl3 using adeno-associated virus into mice, thereby dominantly expressing DN-KLHL3 in the liver, ameliorated diet-induced obesity, IR, and NAFLD. Finally, adenoviral overexpression of DN-KLHL3, but not wild-type KLHL3, in hepatocytes revealed an energetic phenotype with an increase in the oxygen consumption rate. The present findings demonstrate a novel function of KLHL3 mutation in extrarenal tissues, such as the liver, and may provide a therapeutic target against obesity and obesity-related diseases.Subject terms: Obesity, Homeostasis  相似文献   
7.
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by inflammation, microangiopathy, and progressive fibrosis in the skin and internal organs. To evaluate the pathophysiologic mechanisms and efficacies of potential therapeutics for SSc, a preclinical model recapitulating the disease phenotypes is needed. Here, we introduce a novel animal model for SSc using immunodeficient mice injected with peripheral blood mononuclear cells (PBMCs) from SSc patients. Human PBMCs acquired from SSc patients and healthy controls were transferred into NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG) mice with concurrent bleomycin injection. Blood, skin, and lung tissues were acquired and analyzed after PBMC engraftment. In addition, we investigated whether the humanized murine model could be used to assess the efficacy of potential therapeutics for SSc. Human PBMCs from SSc patients and healthy controls were engrafted into the blood, skin, and lung tissues of NSG mice. Histological analysis of affected tissues from mice treated with SSc PBMCs (SSc hu-mice) demonstrated substantial inflammation, fibrosis and vasculopathy with human immune cell infiltration and increased expression of IL-17, TGF-β, CCL2, CCL3, and CXCL9. The proportions of circulating and tissue-infiltrating T helper 17 (Th17) cells were elevated in SSc hu-mice. These cells showed increased expression of CXCR3 and phosphorylated STAT3. SSc hu-mice treated with rebamipide and other potential Th17-cell-modulating drugs presented significantly reduced tissue fibrosis. Mice injected with patient-derived PBMCs show promise as an animal model of SSc.Subject terms: Autoimmunity, Autoimmune diseases  相似文献   
8.
The pH-selective interaction between the immunoglobulin G (IgG) fragment crystallizable region (Fc region) and the neonatal Fc receptor (FcRn) is critical for prolonging the circulating half-lives of IgG molecules through intracellular trafficking and recycling. By using directed evolution, we successfully identified Fc mutations that improve the pH-dependent binding of human FcRn and prolong the serum persistence of a model IgG antibody and an Fc-fusion protein. Strikingly, trastuzumab-PFc29 and aflibercept-PFc29, a model therapeutic IgG antibody and an Fc-fusion protein, respectively, when combined with our engineered Fc (Q311R/M428L), both exhibited significantly higher serum half-lives in human FcRn transgenic mice than their counterparts with wild-type Fc. Moreover, in a cynomolgus monkey model, trastuzumab-PFc29 displayed a superior pharmacokinetic profile to that of both trastuzumab-YTE and trastuzumab-LS, which contain the well-validated serum half-life extension Fcs YTE (M252Y/S254T/T256E) and LS (M428L/N434S), respectively. Furthermore, the introduction of two identified mutations of PFc29 (Q311R/M428L) into the model antibodies enhanced both complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity activity, which are triggered by the association between IgG Fc and Fc binding ligands and are critical for clearing cancer cells. In addition, the effector functions could be turned off by combining the two mutations of PFc29 with effector function-silencing mutations, but the antibodies maintained their excellent pH-dependent human FcRn binding profile. We expect our Fc variants to be an excellent tool for enhancing the pharmacokinetic profiles and potencies of various therapeutic antibodies and Fc-fusion proteins.Subject terms: Antibody therapy, Molecularly targeted therapy, Drug development  相似文献   
9.
10.
Abstract

We demonstrate the electrical properties of nano energy harvesters (NEHs) with various textiles for smart textiles that can be applied to the next generation wearable electronics. Output voltages and currents of NEHs with various fabrics, such as a cotton, rayon and wool that have different triboelectricity were measured. Cotton, rayon and wool shows the maximum output voltages of 1.250, 3.313 and 4.063 V, respectively. In addition, output currents of those textiles were 0.75, 4.4, 1.063 μA, respectively. Wool, in particular, which has the highest triboelectricity of 350 V exhibits the highest output voltage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号