首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   2篇
化学   110篇
晶体学   4篇
力学   10篇
数学   14篇
物理学   87篇
  2021年   2篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   2篇
  1996年   10篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   9篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   6篇
  1987年   8篇
  1986年   5篇
  1985年   9篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   9篇
  1976年   9篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1968年   3篇
  1967年   1篇
  1966年   2篇
  1941年   1篇
  1934年   2篇
  1933年   1篇
排序方式: 共有225条查询结果,搜索用时 296 毫秒
61.
Human ovarian carcinoma cells (MDAH 2774) were treated with sodium ascorbate (VC), menadione (VK3), or with a VC:VK3 combination for 1 h and then studied using light microscopy (LM) and scanning (SEM) and transmission electron (TEM) microscopy. Plasma membrane damage (blisters and blebs, hairy aspect) results from vitamin C (VC) treatment, while cytoskeletal damage and self-morsellation are caused by vitamin K3 (VK3) treatment. VC:VK3-treated cells exhibit exacerbated injuries characteristic of both VC and VK3 treatment as well as a significant decrease in cell diameters from 20-35 microm for control cells to 7-12 microm for VC:VK3 treatment. Moreover, after a 1-h exposure to the vitamin combination, autoschizis (43%), apoptosis (3%), and oncosis (1.9%) are observed at the percentages indicated. All cellular changes associated with autoschizis observed with SEM were confirmed by LM and TEM observations and are consistent with cell death by autoschizis: decrease in cell size, cytoplasmic self-excisions, degradation of the nucleus and nucleolus without formation of apoptotic bodies and, ultimately, karyorrhexis and karyolysis. These results also suggest that the vitamin combination may find clinical use in the treatment of ovarian cancer.  相似文献   
62.
The bent d(0) titanium metallocene (Cp)(2)Ti(NCS)(2) exhibits an intense phosphorescence from a ligand-to-metal charge transfer triplet excited state at 77 K in an organic glass substrate and a poly(methyl methacrylate) plastic substrate. Quantum chemical calculations and spectroscopic studies show that the orbital parentage of this triplet state arises from the promotion of an electron from an essentially nonbonding symmetry adapted pi molecular orbital located on the NCS(-) ligands to a d(z)2-(y)2 orbital located on the Ti metal. Standard infrared spectroscopy of (Cp)(2)Ti(NCS)(2) in its ground electronic state at 77 K reveals a pair of closely spaced absorptions at (2072 cm(-1), 2038 cm(-1))(glass) and (2055 cm(-1), 2015 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretching modes of the two coordinated NCS(-) ligands. Low-temperature (77 K) time-resolved infrared spectroscopy that accesses the phosphorescing triplet excited state on the ns time scale shows an IR bleach that is coincident with the two ground state CN stretching bands and an associated grow-in of a pair of new IR bands at slightly lower energies (2059 cm(-1), 2013 cm(-1))(glass) and (2049 cm(-1), 1996 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretches in the emitting triplet state. These transient IR bands decay with virtually identical lifetimes to those observed for the phosphorescence decays when measured under identical experimental conditions. Singular value decomposition analysis of the time-resolved infrared data shows that the observed transient IR features arise from the same electronic manifold as measured through luminescence studies. The close similarity between the ground state and excited-state CN stretching bands in (Cp)(2)Ti(NCS)(2) indicates that symmetry breaking does not occur in forming the charge-transfer triplet excited-state manifold; i.e., electron density is withdrawn from a delocalized pi MO spread across both NCS(-) ligands. Calculations at several levels of theory reveal a delocalized ligand-to-metal charge transfer excited triplet manifold. These calculations closely reproduce the relative intensity ratios and frequencies of the symmetric and antisymmetric transient infrared vibrations in the CN region. This study is the first time-resolved infrared investigation of a ligand-to-metal charge-transfer excited state and the first to be performed at cryogenic temperatures in thin-film organic glass and plastic substrates.  相似文献   
63.
We have developed a novel method to study the interactions of nucleic acids with cationic species. The method, called phosphorus relaxation enhancement (PhoRE), uses (1)H-detected (31)P NMR of exogenous probe ions to monitor changes in the equilibrium between free Mn(2+) and Mn(2+) bound to the RNA. To demonstrate the technique, we describe the interactions of four RNA molecules with metal ions (K(+) and Mg(2+)), a small molecule drug (neomycin b), and a cationic peptide (RSG1.2). In each case, cationic ligand binding caused Mn(2+) to be displaced from the RNA. Free Mn(2+) was determined from its effect on the T(2) NMR relaxation rate of either phosphite (HPO(3)(2-)) or methyl phosphite (MeOPH, CH(3)OP(H)O(2-)). Using this method, the effects of [RNA] as low as 1 microM could be measured in 20 min of accumulation using a low field (200 MHz) instrument without pulsed field gradients. Cation association behavior was sequence and [RNA] dependent. At low [K(+)], Mn(2+) association with each of the RNAs decreased with increasing [K(+)] until approximately 40 mM, where saturation was reached. While saturating K(+) displaced all the bound Mn(2+) from a 31-nucleotide poly-uridine (U(31)), Mn(2+) remained bound to each of three hairpin-forming sequences (A-site, RRE1, and RRE2), even at 150 mM K(+). Bound Mn(2+) was displaced from each of the hairpins by Mg(2+), allowing determination of Mg(2+) dissociation constants (K(d,Mg)) ranging from 50 to 500 microM, depending on the RNA sequence and [K(+)]. Both neomycin b and RSG1.2 displaced Mn(2+) upon binding the hairpins. At [RNA] approximately 3 microM, RRE1 bound a single equivalent of RSG1.2, whereas neither RRE2 nor A-site bound the peptide. These behaviors were confirmed by fluorescence polarization using TAMRA-labeled peptide. At 2.7 microM RNA, the A-site hairpin bound a single neomycin b molecule. The selectivity of RSG1.2 binding was greatly diminished at higher [RNA]. Similarly, each hairpin bound multiple equivalents of neomycin at the higher [RNA]. These results demonstrate the utility of the PhoRE method for characterizing metal binding behaviors of nucleic acids and for studying RNA/ligand interactions.  相似文献   
64.
4-Carboxy-5-methyl-2-aryl-2H-1,2,3-triazoles undergo considerable fragmentation on electron impact including loss of OH and H2O from the molecular ions and rupture of the triazole ring. 4-Carboxy-5-phenyl-2-aryl-2H-1,2,3-triazoles, on the other hand, show no loss of H2O from the molecular ions.  相似文献   
65.
The conformational behaviour of the six isomers of thiobispyridine has been investigated using ab initio STO-3G*//rigid-roto, STO-3G*//STO-3G* and 6–31G**//STO-3G* molecular orbital models. The analysis reveals both the importance of optimising critical structure parameters and the basis set dependence of calculated rotational barrier heights. The most reliable model (6–31G**//STO-3G*) clearly indicates that the minimum energy conformers are not planar and that energy barriers between 30–100 kJ mol?1 restrict inter-conversion to planar structures, thereby preventing conjugation between the p-electrons of the sulfur atom and the π system of both pyridine rings. From the calculated barrier heights, two mechanisms can be employed to explain conformer interconversion about the C? S bond: a disrotatory one-ring flip or a conrotatory two-ring flip mechanism. Where comparisons can be made (eg. 2,2′-thiobispyridine), dipole moment calculations are shown to be in good agreement with experiment. Finally, of the six isomers, appropriately substituted 2,2′, 2,3′- and 2,4′-thiobispyridines are most prone to a Smiles rearrangment.  相似文献   
66.
The syntheses of 1-(3,4-dioxopentyl)uracil (V), 1-(2,3-dioxobutyl)uracil (XIIa), 1-(2,3-dioxobutyl)-3-methyluracil (XIIb) and 1-(2,3-dioxobutyl)thymine (XIIc) are described. These are the first compounds to be prepared which have α-diketone functions attached to biologically important pyrimidines. Preparation of the dioxopentyluracil was by oximation of 1-(4-oxopentyl)uracil, and of the dioxobutyl compounds was by alkylation of the appropriate pyrimidine with the dimethoxy ketal of bromobiacetyl, followed by hydrolysis under special conditions. The characteristics of the absorption and emission spectra in various solvents are presented and discussed. Dioxopentyl uracil exhibits both phosphorescence and fluorescence at room temperature; the dioxobutyl pyrimidines are fluorescent but non-phosphorescent under the same conditions. The fluorescence quantum yields of all four compounds are about 0.2%, similar to those of biacetyl or 2,3-pentanedione.  相似文献   
67.
The mass spectral fragmentation patterns of 6-methoxy-, 6-ethoxy- and 6-propoxy-2,2 ′-bipyridyls are reported. The base peaks in the spectra of both the 6-methoxy and 6-ethoxy compounds are due to the M-lion of 6-methoxy-2,2′-bipyridyl, while the base peak with 6-propoxy-2,2- bipyridyl is due to a species formed by loss of C3H6 from the molecular ion.  相似文献   
68.
An algebraic characterization of vacuum states in Minkowski space is given which relies on recently proposed conditions of geometric modular action and modular stability for algebras of observables associated with wedge-shaped regions. In contrast to previous work, continuity properties of these algebras are not assumed but derived from their inclusion structure. Moreover, a unique continuous unitary representation of spacetime translations is constructed from these data. Thus, the dynamics of relativistic quantum systems in Minkowski space is encoded in the observables and state and requires no prior assumption about any action of the spacetime symmetry group upon these quantities.  相似文献   
69.
Zn2SiO4:Mn2+ phosphor films were successfully prepared by a novel combustion chemical vapor deposition (CCVD) method. In the CCVD process, a flammable solution, containing precursor materials, is atomized and sprayed through a specially designed nozzle and ignited to form a combustion flame. This enables crystallized films to be directly deposited onto a substrate in open-atmosphere with no post deposition heat treatment. SEM images indicated that the film deposited at 1200 °C consisted of densely packed particles with a fine grain size of several 100 nm. Strong Photoluminescence (PL) and cathodoluminescence (CL) intensities were observed with Zn2SiO4:Mn2+ samples deposited at a substrate temperature of 1200 °C exhibiting the best crystallinity and highest luminescence. The optimum doping level for films deposited using CCVD was found to be ∼4 mol% Mn2+ of starting concentration, with a maximum CL luminescence equivalent to 53% of the luminescence measured from a commercial powder phosphor. A relatively fast CL decay with life time about 0.6-0.7 ms was also observed from these films.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号