首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   16篇
化学   211篇
晶体学   12篇
力学   15篇
数学   14篇
物理学   78篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   11篇
  2020年   8篇
  2019年   18篇
  2018年   14篇
  2017年   8篇
  2016年   10篇
  2015年   14篇
  2014年   20篇
  2013年   30篇
  2012年   34篇
  2011年   22篇
  2010年   5篇
  2009年   12篇
  2008年   13篇
  2007年   11篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
排序方式: 共有330条查询结果,搜索用时 31 毫秒
101.
Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.  相似文献   
102.
Nanotechnology is playing an important role in drug delivery to overcome limitations of conventional drug delivery systems in terms of solubility, in vivo stability, pharmacokinetics, and bio-distribution. The controlled transportation of drug into the cell and within the cell is a major challenge to be addressed. Cellular molecular motors have been exploited for their cargo carrying capacity for various applications including engineering and health care. Combination of nanotechnology and biomolecular motors can address some of the challenges in drug delivery. In the present study, transportation of drug nanocomposites has been demonstrated. Nanocomposites of 6-mercaptopurine and levodopa drugs (cancer and Parkinson’s disease, respectively) were prepared with gold nanoparticles (GNPs) by covalent attachment and these nanocomposites were attached to actin filaments. These nanocomposites were in-turn transported by actin filaments on myosin tracks. Characterization of drug nanocomposites formation was done by UV–Vis spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy. GNP composites of 6-mercaptopurine and levodopa were formed by sulfide and amide bond formation, respectively. Average velocity of actin filament attached to nanocomposites was found to be 3.17 and 3.89 μm/s for levodopa and 6-mercaptopurine, respectively, as compared to actin filaments with velocity of 4.0–6.0 μm/s. Three concepts have been proposed for the study of drug transportation into the cell based on polycationic complex formation, interaction of actin with cellular myosin and Biomolecular Adaptor for Retrograde Transport (BART) technology. The aspects of this study heads toward the development of an approach to utilize molecular motors for nanoscale transportation endogenously.  相似文献   
103.
Green chemistry-assisted biocompatible copper (Cu), silver (Ag), and iron oxide (Fe2O3) nanoparticles (NPs) synthesis along with surface modification using Koelreuteria apiculata is demonstrated in this research, for the first time. Appropriate analytical techniques were utilized to confirm the preparation, spherical morphology, and crystalline structure of each of the NPs. The antioxidant nature of synthesized NPs was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging. Besides, the antimicrobial activity was also performed using bacterial strains of Staphylococcus aureus, Escherichia coli, and Salmonella typhi. Aspergillus sp. was designed as marker specie for the antifungal studies. The outcomes of NPs exposure, analyzed with reference to Chlorella sp. of the algal family exhibit the numerical values around 833% for AgNPs, 497% of CuNPs, and 456% for Fe2O3NPs. Phytotoxicity assay performed on the seeds of Vigna radiata and Cicer arietinum further validate the accordant nature of NPs towards vivacity. Allium cepa was also used as a test model to ascertain the genotoxic effects of the NPs wherein the mitotic index (MI) was calculated for AgNPs, CuNPs, and Fe2O3NPs as 42.1, 51.7, and 54.2% respectively. The outcomes of this research proved the suitability and affordability of our NPs developed using green synthesis for new industrial applications of in-situ reduction of carcinogenic compounds from water and soil.  相似文献   
104.
Diblock copolymers composed of monomers of tert-butyl acrylate and a side-chain azobenzenecontaining monomer, 4-[(E)-(4-nitrophenyl)diazenyl]phenyl prop-2-enoate were synthesized using atom transfer radical polymerization technique. Experimental strategy involved synthesis of block of tert-butyl acrylate macroinitiator followed by addition of second block of azobenzene-containing monomer to prepare desired block-copolymer. GPC analysis indicated narrow molecular weight distributions with degree of polymerization found in good agreement with targeted value. Prepared block copolymers of varying chain lengths can potentially be used to obtain morphologies that can find useful applications for biomedical applications including intriguing photo-switchable drug delivery systems.  相似文献   
105.
106.
The stem bark and wood of Berberis aristata DC (Daruharidra) are one of the principal ingredients of traditional skin lighting and exfoliating scrub preparation in India. The standardised extract of B. aristata was screened to evaluate their in vitro antityrosinase activity and inhibition kinetics. Phytochemical and pharmacological studies were carried out with different solvent fractions of the methanol extract of B. aristata (MEBA). RP-HPLC analysis was used to determine the berberine content in extract and fractions of B. aristata. MEBA showed maximum berberine content. Extract and fractions of B. aristata contain the maximum amount of alkaloids than other constituents. In tyrosinase inhibition assay, MEBA was found to possess highest dose-dependent monophenolase and moderate diphenolase activity. The enzyme kinetic study revealed that MEBA possessed mixed type inhibition of monophenolase activity of tyrosinase. These bioactivities indicate that the MEBA has antihyperpigmentation potential in human skin.  相似文献   
107.
Propargylation of 3-substituted-1,2,4-triazole-5-thiols, which predominantly exist as their thione tautomers, was carried out with the view to synthesize different heterocycles and study their biological activity. Three different products namely, a mono S-propargyl and two S,N-dipropargyl regioisomers, arising from N1/N2 substitution, were isolated and characterized. Unambiguous structural elucidation of the regioisomers of S,N-dipropargyl derivatives was achieved by means of (13)C-(1)H HMBC technique. The proportion of the regioisomers was found to vary with the substituent on the 1,2,4-triazole thiols. No product corresponding to N4 substitution was isolated from any of the reactions carried out.  相似文献   
108.
In the present study, a novel p-phenylcarboxylic acid BODIPY ( L ) immobilized MCM-41 based solid chemosensor material L-propylsilyl@MCM-41 ( MS4 ) was developed to detect multiple metal ions in a pure aqueous medium. The synthesized solid chemosensor material MS4 shows high sensitivity and removal ability towards trivalent (Al3+, Cr3+) and divalent (Cu2+, Hg2+) metal ions. The emission intensity of MS4 enhanced multifold selectively in the presence of trivalent (Al3+, Cr3+) metal ions and shows quenching in the presence of divalent (Cu2+, Hg2+) metal ions. The limit of detection was calculated to be in the nanomolar range with Al3+, Cr3+, Cu2+, and Hg2+ metal ions in the aqueous medium. The spectroscopic and analytical results suggest that MS4 selectively binds with Al3+ and Cr3+ through −NH functionality and with Hg2+ and Cu2+ through −COOH functionality of p-phenylcarboxylic acid BODIPY ( L ). Further, MS4 selectively removes Al3+, Cr3+, Cu2+, and Hg2+ metal ions from the aqueous media with removal efficiency of 97.28 %, 96.34 %, 87.19 %, and 95.63 %, respectively. No noticeable change in the concentration was observed for other metal ions. The recycling potential of MS4 was evaluated using EDTA for up to seven cycles with no significant reduction in sensing capability.  相似文献   
109.
A rare family of five and six-coordinated high-spin Fe(III) porphyrins incorporating weak axial ligands are synthesized and structurally characterized which demonstrate, for the first time, stepwise metal displacements in a single distorted macrocyclic environment that has generally been seen in many biological systems. The introduction of four nitro groups into the meso-positions of octaethyl porphyrin severely distorts the porphyrin geometry and provides an interesting modulation of the macrocycle properties which enables the facile isolation of "pure" high-spin Fe(III)(tn-OEP)Cl, Fe(III)(tn-OEP)(MeOH)Cl, and Fe(III)(tn-OEP)(H2O)2(+) in excellent yields in a saddle distorted macrocyclic environment that are known to stabilize intermediate spin states. The stepwise out-of-plane displacements of iron are as follows: 0.47 A for Fe(III)(tn-OEP)Cl; 0.09 A for Fe(III)(tn-OEP)(MeOH)Cl, and 0.01 A for Fe(III)(tn-OEP)(H2O)2(+) from the mean plane of the porphyrins. However, in both five and six-coordinated Fe(III) porphyrins, the Fe-Np distances are quite comparable while the porphyrin cores have expanded significantly, virtually to the same extent for the six-coordinate complexes reported here. The large size of the high-spin iron(III) atom in Fe(III)(tn-OEP)(H2O)2(+) is accommodated perfectly with no displacement of the metal. This expansion is accompanied by a significant decrease of the saddle distortion with a clear increase of the ruffling. Furthermore, the Fe atom in Fe(III)(tn-OEP)(MeOH)Cl is not out of plane because of the larger atom size; however, the displacement of the iron depends on both the relative strength of the axial ligands, as well as the nature and extent of the ring deformation. Our characterization demonstrates that increase in ruffling and/or decrease in macrocycle deformation brings the iron atom more into the plane in a distorted macrocyclic environment. Our observations thus suggest that the displacements of iron in proteins are the consequences of nonequivalent axial coordination, as well as protein induced deformations at the heme. The high-spin nature of the complexes reported here is believed to be due to the larger Fe-Np distances which then reduce substantially the interaction between iron d(x2)-y2 and porphyrin a(2u) orbital. The Fe(III)/Fe(II) reduction potential of Fe(III)(tn-OEP)Cl shows a reversible peak at large positive value (0.20 V), and no ring-centered oxidation was observed within the solvent limit (approximately 1.80 V). It is thus easier to reduce Fe(III)(tn-OEP)Cl by almost 700 mV compared to Fe(III)(OEP)Cl while oxidations are very difficult. Furthermore, the addition of 3-Cl-pyridine to Fe(III)(tn-OEP)Cl in air undergoes spontaneous auto reduction to produce the rare air-stable Fe(II)(tn-OEP)(3-Cl-py)2 that shows Fe(II)/Fe(III) oxidation peaks at high positive potential (0.79 V), which is approximately 600 mV more anodic compared to [Fe(II)(tn-OEP)Cl](-). This large anodic shift illustrates the effective removal of metal-centered electron density by the macrocycle when the metal is constrained to reside in the porphyrin plane.  相似文献   
110.
The aggregation behavior of cetylpyridinium chloride (CPyCl) in N,N-dimethylformamide (DMF)-water mixed solvents was investigated using electrical conductivity and spectroscopic techniques. Micellar and thermodynamic parameters (DeltaG(m)(0), DeltaH(m)(0), DeltaS(m)(0) and Delta(m)C(p)(0)) were obtained from the temperature dependence of critical micelle concentrations in various aqueous mixtures of DMF. The differences in the Gibbs energies of micellization of CPyCl between water and binary solvents were determined to evaluate the influence of the cosolvent. The effect of cosolvent on the Krafft temperature (K(T)) and on the aggregation number was also analyzed. Micellar micropolarity was examined spectrophotometrically using two different probes, methyl orange (MO) and methylene blue (MB), and was found to increase with DMF addition, accompanied by an enhanced solvation. The mechanism of docking of surfactant and the probe molecules in the system were obtained by using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号