首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   10篇
化学   11篇
力学   22篇
数学   125篇
物理学   47篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   9篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   10篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   12篇
  2007年   8篇
  2006年   8篇
  2005年   8篇
  2004年   8篇
  2003年   9篇
  2002年   5篇
  2001年   4篇
  2000年   8篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1978年   2篇
  1976年   7篇
  1975年   9篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   7篇
  1968年   1篇
  1967年   3篇
  1965年   1篇
排序方式: 共有205条查询结果,搜索用时 31 毫秒
91.
Let F be a family of graphs. A graph is F-free if it contains no copy of a graph in F as a subgraph. A cornerstone of extremal graph theory is the study of the Turán number ex(n,F), the maximum number of edges in an F-free graph on n vertices. Define the Zarankiewicz number z(n,F) to be the maximum number of edges in an F-free bipartite graph on n vertices. Let C k denote a cycle of length k, and let C k denote the set of cycles C ?, where 3≤?≤k and ? and k have the same parity. Erd?s and Simonovits conjectured that for any family F consisting of bipartite graphs there exists an odd integer k such that ex(n,FC k ) ~ z(n,F) — here we write f(n)g(n) for functions f,g: ? → ? if lim n→∞ f(n)/g(n)=1. They proved this when F ={C 4} by showing that ex(n,{C 4;C 5})~z(n,C 4). In this paper, we extend this result by showing that if ?∈{2,3,5} and k>2? is odd, then ex(n,C 2? ∪{C k }) ~ z(n,C 2? ). Furthermore, if k>2?+2 is odd, then for infinitely many n we show that the extremal C 2? ∪{C k }-free graphs are bipartite incidence graphs of generalized polygons. We observe that this exact result does not hold for any odd k<2?, and furthermore the asymptotic result does not hold when (?,k) is (3, 3), (5, 3) or (5, 5). Our proofs make use of pseudorandomness properties of nearly extremal graphs that are of independent interest.  相似文献   
92.
In this short note, we prove that for β<1/5 every graph G with n vertices and n2−β edges contains a subgraph G with at least cn2−2β edges such that every pair of edges in G lie together on a cycle of length at most 8. Moreover edges in G which share a vertex lie together on a cycle of length at most 6. This result is best possible up to the constant factor and settles a conjecture of Duke, Erdős, and Rödl.  相似文献   
93.
Given a graph G and an integer k, two players take turns coloring the vertices of G one by one using k colors so that neighboring vertices get different colors. The first player wins iff at the end of the game all the vertices of G are colored. The game chromatic number χg(G) is the minimum k for which the first player has a winning strategy. In this study, we analyze the asymptotic behavior of this parameter for a random graph Gn,p. We show that with high probability, the game chromatic number of Gn,p is at least twice its chromatic number but, up to a multiplicative constant, has the same order of magnitude. We also study the game chromatic number of random bipartite graphs. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   
94.
We study the resilience of random and pseudorandom directed graphs with respect to the property of having long directed cycles. For every 08γ81/2 we find a constant c = c(γ) such that the following holds. Let G = (V, E) be a (pseudo)random directed graph on n vertices and with at least a linear number of edges, and let G′ be a subgraph of G with (1/2 + γ)|E| edges. Then G′ contains a directed cycle of length at least (c ? o(1))n. Moreover, there is a subgraph G′′of G with (1/2 + γ ? o(1))|E| edges that does not contain a cycle of length at least cn. © 2011 Wiley Periodicals, Inc. J Graph Theory 70: 284–296, 2012  相似文献   
95.
A classical theorem of Dirac from 1952 asserts that every graph on n vertices with minimum degree at least \begin{align*}\left\lceil n/2 \right\rceil\end{align*} is Hamiltonian. In this paper we extend this result to random graphs. Motivated by the study of resilience of random graph properties we prove that if p ? log n/n, then a.a.s. every subgraph of G(n,p) with minimum degree at least (1/2 + o (1) )np is Hamiltonian. Our result improves on previously known bounds, and answers an open problem of Sudakov and Vu. Both, the range of edge probability p and the value of the constant 1/2 are asymptotically best possible. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   
96.
Linear ion traps exhibit greater space charge capacity compared to conventional 3D Paul traps. Commercial ion traps are made of electrodes of hyperbolic shape. The present work investigates the possibilities of designing linear ion traps from simple electrodes, which are relatively cheap and handy for manufacturing and, at the same time, are comparable to commercial ion traps in resolving power of mass analysis. Using computer simulations and optimization of resonance ejection scan, it is shown linear ion traps can be made of electrodes of triangular cross-section with an ejection slit width of 16% of the trap inradius; the resolving power of the mass spectrum is more than 18000.  相似文献   
97.
The classical result of Erd?s and Rényi asserts that the random graph G(n,p) experiences sharp phase transition around \begin{align*}p=\frac{1}{n}\end{align*} – for any ε > 0 and \begin{align*}p=\frac{1-\epsilon}{n}\end{align*}, all connected components of G(n,p) are typically of size Oε(log n), while for \begin{align*}p=\frac{1+\epsilon}{n}\end{align*}, with high probability there exists a connected component of size linear in n. We provide a very simple proof of this fundamental result; in fact, we prove that in the supercritical regime \begin{align*}p=\frac{1+\epsilon}{n}\end{align*}, the random graph G(n,p) contains typically a path of linear length. We also discuss applications of our technique to other random graph models and to positional games. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   
98.
An old problem of Moser asks: what is the size of the largest union-free subfamily that one can guarantee in every family of m sets? A family of sets is called union-free if there are no three distinct sets in the family such that the union of two of the sets is equal to the third set. We show that every family of m sets contains a union-free subfamily of size at least \(\left\lfloor {\sqrt {4m + 1} } \right\rfloor - 1\) and that this bound is tight. This solves Moser’s problem and proves a conjecture of Erd?s and Shelah from 1972.More generally, a family of sets is a-union-free if there are no a + 1 distinct sets in the family such that one of them is equal to the union of a others. We determine up to an absolute multiplicative constant factor the size of the largest guaranteed a-union-free subfamily of a family of m sets. Our result verifies in a strong form a conjecture of Barat, Füredi, Kantor, Kim and Patkos.  相似文献   
99.
In this paper we studynon-interactive correlation distillation (NICD), a generalization of noise sensitivity previously considered in [5, 31, 39]. We extend the model toNICD on trees. In this model there is a fixed undirected tree with players at some of the nodes. One node is given a uniformly random string and this string is distributed throughout the network, with the edges of the tree acting as independent binary symmetric channels. The goal of the players is to agree on a shared random bit without communicating. Our new contributions include the following:
  • ? In the case of ak-leaf star graph (the model considered in [31]), we resolve the open question of whether the success probability must go to zero ask » ∞. We show that this is indeed the case and provide matching upper and lower bounds on the asymptotically optimal rate (a slowly-decaying polynomial).
  • ? In the case of thek-vertex path graph, we show that it is always optimal for all players to use the same 1-bit function.
  • ? In the general case we show that all players should use monotone functions. We also show, somewhat surprisingly, that for certain trees it is better if not all players use the same function.
  • Our techniques include the use of thereverse Bonami-Beckner inequality. Although the usual Bonami-Beckner has been frequently used before, its reverse counterpart seems not to be well known. To demonstrate its strength, we use it to prove a new isoperimetric inequality for the discrete cube and a new result on the mixing of short random walks on the cube. Another tool that we need is a tight bound on the probability that a Markov chain stays inside certain sets; we prove a new theorem generalizing and strengthening previous such bounds [2, 3, 6]. On the probabilistic side, we use the “reflection principle” and the FKG and related inequalities in order to study the problem on general trees.  相似文献   
    100.
    A bisection of a graph is a bipartition of its vertex set in which the number of vertices in the two parts differ by at most 1, and its size is the number of edges which go across the two parts. In this paper, motivated by several questions and conjectures of Bollobás and Scott, we study maximum bisections of graphs. First, we extend the classical Edwards bound on maximum cuts to bisections. A simple corollary of our result implies that every graph on n vertices and m   edges with no isolated vertices, and maximum degree at most n/3+1n/3+1, admits a bisection of size at least m/2+n/6m/2+n/6. Then using the tools that we developed to extend Edwards?s bound, we prove a judicious bisection result which states that graphs with large minimum degree have a bisection in which both parts span relatively few edges. A special case of this general theorem answers a conjecture of Bollobás and Scott, and shows that every graph on n vertices and m   edges of minimum degree at least 2 admits a bisection in which the number of edges in each part is at most (1/3+o(1))m(1/3+o(1))m. We also present several other results on bisections of graphs.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号