首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   13篇
化学   69篇
力学   2篇
数学   17篇
物理学   38篇
  2024年   2篇
  2023年   5篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2015年   4篇
  2014年   5篇
  2013年   10篇
  2012年   9篇
  2011年   17篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1990年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1967年   1篇
排序方式: 共有126条查询结果,搜索用时 727 毫秒
61.
[M(SRaaiNR′)Cl3] (M = Rh(III), Ir(III) and SRaaiNR′ = 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazole) complexes are described in this article. The single crystal X-ray structure of one of the complexes, [Rh(SMeaaiNEt)Cl3] (3b), shows a tridentate chelation of SMeaaiNEt via N(imidazole), N(azo) and S(thioether) donor centres. Spectral characterization has been done by IR, UV–Vis and 1H NMR data. The electronic structure, redox properties and spectra are well supported by DFT and TDDFT computation on the complexes.  相似文献   
62.
The reaction of methane and bromine is a mildly exothermic and exergonic example of free radical alkane activation. We show here that the reaction of methane and bromine (CH4:Br2 > or = 1) may yield either a kinetically or a thermodynamically determined bromomethane product distribution and proceeds in two main phases between 450 and 550 degrees C under ambient pressure on the laboratory time scale. This is in contrast to the highly exothermic methane fluorination or chlorination reactions, which give kinetic product distributions, and to the endergonic iodination of methane, which yields an equilibrium distribution of iodomethanes. The first phase of reaction between methane and bromine is a relatively rapid consumption of bromine to yield a kinetic methane bromination product distribution characterized by low methane conversion, low methyl bromide selectivity, and higher polybromomethane selectivity. In the second slower phase CHxBr(4-x) reproportionation leads to significantly higher methane conversion and higher methyl bromide selectivity. For methane bromination at 525 degrees C, CH4 conversion and CH3Br selectivity reach 73.5% and 69.5%, respectively, after ample (60 s) time for reproportionation. The high selectivity and simple configuration make this pathway an attractive candidate for scale-up in halogen-mediated methane partial oxidation processes.  相似文献   
63.
Soft chemistry has emerged as an important means of generating nanocrystals, nanowires and other nanostructures of semiconducting materials. We describe the synthesis of CdS and other metal chalcogenide nanocrystals by a solvothermal route. We also describe the synthesis of nanocrystals of AlN, GaN and InN by the reaction of hexamethyldisilazane with the corresponding metal chloride or metal cupferronate under solvothermal conditions. Nanowires of Se and Te have been obtained by a self-seeding solution-based method. A single source precursor based on urea complexes of metal chlorides gives rise to metal nitride nanocrystals, nanowires and nanotubes. The liquidliquid interface provides an excellent medium for preparing single-crystalline films of metal chalcogenides.  相似文献   
64.
A comparative time-resolved emission studies of several naphtho-crown ethers I–V, where metal ions can be complexed in a predetermined orientation with respect to the naphthalene (Naph) π-plane and naphthalene-linked aza crown ethers (L1 and L2) have been presented. In both the systems, crown ethers and aza crown ethers, naphthalene fluorescence gets quenched. In the systems I to V, the quenching is mainly due to efficient spin-orbit coupling (SOC) leading to greater population of the lowest triplet state of naphthalene. This SOC depends on the orientation of the crown ring with respect to the Naph-π-plane. However, in the systems L1 and L2, the quenching is due to photoinduced electron transfer (PET) from nitrogen lone pair of the aza crown ring to naphthalene moiety and consequent exciplex formation. The results have been interpreted using the time-resolved emission studies of all the compounds in various solvents, their alkali metal ion complexes, and protonated ligands.  相似文献   
65.
Supramolecular self-assembly of small organic molecules has emerged as a powerful tool to construct well-defined micro- and nanoarchitecture through fine-tuning a range of intermolecular interactions. The size, shape, and optical properties of these nanostructures largely depend on the specific assembly of the molecular building units, temperature and polarity of the medium, and external stimuli. The engineering of supramolecular self-assembled nanostructures with morphology-dependent tunable emission is in high demand due to the promising scope in nanodevices and molecular machines. However, probing the evolution of molecular aggregates from the solution and directing the self-assembly process in a pre-defined fashion are challenging. In the present study, we have deciphered the sequential evolution of supramolecular nanofibers from solution to spherical and oblong-shaped nanoparticles through the variation of solvent polarity, tuning the hydrophobic–hydrophilic interactions. An intriguing case of molecular self-assembly has been elucidated employing a newly designed π-conjugated thiophene derivative (TPAn) through a combination of steady-state absorption, emission measurements, fluorescence correlation spectroscopy (FCS), and electron microscopy. The FCS analysis and microscopy results revealed that the small-sized nanofibers in the dispersion further agglomerated upon solvent evaporation, resulting in a network of nanofibers. Stimuli-responsive reversible interconversion between a network of nanofibers and spherical nanoaggregates was probed both in dispersion and solvent-evaporated state. The evolution of organic nanofibers and a subtle control over the self-assembly process demonstrated in the current investigation provide a general paradigm to correlate the size, shape, and emission properties of fluorescent molecular aggregates in complex heterogeneous media, including a human cell.

Supramolecular nanofiber evolution in solution and solid-state, including stimuli-responsive reversible interconversion among diverse nanoarchitectures, was probed through a combined spectroscopic and microscopic approach.  相似文献   
66.
GaMnN films with 1-3% Mn deposited on Si(100) and Al2O3(0001) substrates, by the technique of nebulized spray pyrolysis by employing acetylacetonate precursors, have been characterized by X-ray diffraction, photoluminescence spectra and other techniques. The films are ferromagnetic and show magnetic hysteresis. The ferromagnetic TC increases with the Mn content, with the 3% Mn film showing a TC of ∼250 K. Anomalous Hall effect is observed below TC where the films exhibit a small negative magnetoresistance.  相似文献   
67.
In the present investigation, we have investigated the effect of zinc oxide nanoparticles (ZnONP) on the production of β-glucosidase (BGL) in Saccharomyces cerevisiae under various conditions. ZnONP was synthesized chemically and characterized using various standard techniques. The results revealed that yeast culture administered with 5 mM ZnONP enhanced the intracellular BGL activity up to 28 % compared to control with simultaneous growth of cells. However, at a higher dose of ZnONP (10 and 15 mM), both the activity of the enzyme and yeast growth was dropped. When yeast cells were grown in alcoholic medium (2, 5, and 10 % ethanol), the growth was found inhibited with substantial reduction of intracellular BGL activity. Interestingly, the administration of ZnONP further inhibited the cell growth, however, suppressed the alcoholic effect on enzyme activity. Moreover, under the same condition, ZnONP enhanced the biological activity of the enzyme in cells, indicated a higher yield of BGL production. When the mechanism of ZnONP-mediated cell growth inhibition was investigated, N-acetylcysteine (NAC)-based cell growth study proved that reactive oxygen species (ROS) was not the sole cell death mechanism induced by ZnONP, indicating a second mechanism of cell death. Our findings provide a new insight on the potential application of ZnONP as an external supplement to enhance the active production of BGL like important industrial enzyme in S. cerevisiae in both normal and alcohol stressed condition as well as to produce baker’s yeast in higher amount.  相似文献   
68.
High-performance counter-current chromatography has been used for the separation of delphinidin-3-O-sambubioside, cyanidin-3-O-sambubioside and p-coumaric acid from crude extract of cranberry. The separation was performed with a two-phase solvent system composed of butanol/0.05% aqueous trifluoroacetic acid/methanol at a volume ratio of 4:5:1. The two-phase solvent system was selected following the determination of partition coefficients (K) in a range of solvent systems using a robotic solvent system selection method. Analytical scale CCC confirmed that this phase system separated the components from a crude cranberry extract (40 mg scale) with acceptable purities. Preparative CCC of 400 mg of crude yielded 4.2 mg of p-coumaric acid at a purity of over 98%, 3.6 mg of delphinidin-3-O-sambubioside at a purity of over 97% and 4.5 mg of cyanidin-3-O-sambubioside at a purity of 73%, which was further purified by preparative high-performance liquid chromatography to yield 3 mg cyanidin-3-O-sambubioside at 95% purity. The identification of delphinidin-3-O-sambubioside, cyanidin-3-O-sambubioside and p-coumaric acid was performed by ESI-MS, 1H-NMR and 13C-NMR spectra.  相似文献   
69.
70.
ABSTRACT

Absorption and fluorescence spectra obtained at temperatures as low as 4 K were investigated between 200 and 1550 nm on samples containing approximately 1.2 at. wt. % Er in Y3Al5O12 (YAG). Within this wavelength range 125 experimental energy (Stark) levels were analyzed, representing data that span 29 2S+1 L J multiplet manifolds of Er3+(4f11) in D2 sites up to an energy of 44,000 cm?1. Agreement between calculated and observed Stark levels was achieved with an r.m.s. deviation of 11.2 cm?1. These transitions originate from the ground-state Stark level in the 4I15/2 manifold to J + 1/2 Stark levels associated with each of the 28 excited-state manifolds. A total of 88 ground-state absorption transition line strengths were measured for 19 2S+1 L J multiplet manifolds between 280 and 1550 nm. For line strength measurements, the Er3+ ion is assumed to be distributed homogeneously throughout the D2 cation sites of Y3+ in the lattice. The line strengths were analyzed with a weighted (E i  ? C i )/E i , with an r.m.s. error of 0.25. Use of a “vector crystal field” parametrization resolves ambiguities in the transition intensity parameters and allows for the definition of polarization-resolved Judd-Ofelt parameters, which may have wide-ranging applicability for future Judd-Ofelt-type intensity calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号