首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2178篇
  免费   72篇
  国内免费   9篇
化学   1583篇
晶体学   9篇
力学   71篇
数学   231篇
物理学   365篇
  2023年   13篇
  2022年   19篇
  2021年   16篇
  2020年   34篇
  2019年   28篇
  2018年   16篇
  2017年   12篇
  2016年   37篇
  2015年   43篇
  2014年   52篇
  2013年   91篇
  2012年   116篇
  2011年   171篇
  2010年   55篇
  2009年   59篇
  2008年   160篇
  2007年   161篇
  2006年   131篇
  2005年   140篇
  2004年   117篇
  2003年   98篇
  2002年   83篇
  2001年   28篇
  2000年   16篇
  1999年   22篇
  1998年   27篇
  1997年   22篇
  1996年   27篇
  1995年   24篇
  1994年   21篇
  1993年   10篇
  1992年   14篇
  1991年   21篇
  1990年   15篇
  1989年   17篇
  1988年   11篇
  1987年   14篇
  1986年   20篇
  1985年   25篇
  1984年   19篇
  1983年   23篇
  1982年   24篇
  1981年   27篇
  1980年   16篇
  1979年   15篇
  1978年   19篇
  1977年   17篇
  1976年   10篇
  1974年   14篇
  1973年   10篇
排序方式: 共有2259条查询结果,搜索用时 15 毫秒
101.
A method for extending charge transfer to bond-order potentials, known as the bond-order potential/split-charge equilibration (BOP/SQE) method [P. T. Mikulski, M. T. Knippenberg, and J. A. Harrison, J. Chem. Phys. 131, 241105 (2009)], is integrated into a new bond-order potential for interactions between oxygen, carbon, and hydrogen. This reactive potential utilizes the formalism of the adaptive intermolecular reactive empirical bond-order potential [S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000)] with additional terms for oxygen and charge interactions. This implementation of the reactive potential is able to model chemical reactions where partial charges change in gas- and condensed-phase systems containing oxygen, carbon, and hydrogen. The BOP/SQE method prevents the unrestricted growth of charges, often observed in charge equilibration methods, without adding significant computational time, because it makes use of a quantity which is calculated as part of the underlying covalent portion of the potential, namely, the bond order. The implementation of this method with the qAIREBO potential is designed to provide a tool that can be used to model dynamics in a wide range of systems without significant computational cost. To demonstrate the usefulness and flexibility of this potential, heats of formation for isolated molecules, radial distribution functions of liquids, and energies of oxygenated diamond surfaces are calculated.  相似文献   
102.
Two approaches have been developed for the enantioselective Reformatsky reaction of ethyl iododifluoroacetate with ketones to form a quaternary carbon centre using (1R,2S)-1-phenyl-2-(1-pyrrolidinyl)-1-propanol as the chiral ligand. Good yields and high enantioselectivities (80-91% ee) were achieved with a range of alkyl aryl ketones in a convenient one-pot protocol using ethyl iododifluoroacetate and diethylzinc to form the difluorinated Reformatsky reagent homogeneously. In the traditional two-step Reformatsky reaction using the preformed Reformatsky reagent generated from ethyl iododifluoroacetate and zinc dust, good yields and good enantioselectivities (75-84% ee) were also obtained.  相似文献   
103.
The elucidation of the structure of the cytotoxic marine sponge alkaloid pyrinodemin A by synthesis is described. Based on the 13C NMR spectra of three double bond positional isomers and the natural product, it is concluded the C14′-C15′ isomer best represents the true structure of pyrinodemin A. In addition, the structural assignment of pyrinodemin C is evaluated.  相似文献   
104.
The versatility and efficiency of dynamic covalent chemistry (DCC) has been exploited in the convergent synthesis of mechanically interlocked dendrimers that are based upon the mutual recognition expressed between secondary dialkylammonium ions and crown ether-like macrocycles. Reversible imine bond formation is employed to clip two acyclic fragments, one of them a diformylpyridine unit bearing a dendritic side chain, and the other a complementary dianiline in the shape of the di(o-aminophenyl)ether of tetraethylene glycol, around each arm of a tritopic trisammonium ion core, thereby affording a branched [4]rotaxane. This template-directed strategy has been demonstrated to work in very high yields (>90%) with successive generations (G0-G2) of a modified Fréchet-type dendritic wedge attached to the 4-position of the diformylpyridine unit. Reduction of these dynamic dendritic systems is achieved upon treatment with borane.THF and results in kinetically stable compounds. The inherent modularity of the overall process should allow for the rapid and straightforward access to many other analogous mechanically interlocked systems in which either the branched core or the dendritic periphery can be modified to suit the needs of any given application of these molecules. Indeed, the dynamic nature of the initial thermodynamically mediated assembly could be utilized in order to amplify particular products from a potential library as a result of a selective recognition process.  相似文献   
105.
106.
We describe the use of cobalt phthalocyanine as a mediator to improve the sensitivity for the electrochemical detection of TNT. Commercial screen‐printed electrodes containing cobalt phthalocyanine were employed for determination of TNT. Improved sensitivities compared to screen‐printed carbon electrodes without phthalocyanine were observed, current response for cyclic voltammetric measurements at modified electrodes being at least double that of unmodified electrodes. A synergistic effect between oxygen and TNT reduction was also observed. Correlation between TNT concentrations and sensor output was observed between 0–200 µM TNT. Initial proof‐of‐concept experiments combining electrochemical determinations, with the use of an air‐sampling cyclone, are also reported.  相似文献   
107.
Herein, we report on the structure and dynamics of the aqueous Ca2+ system studied by using ab initio molecular dynamics (AIMD) simulations. Our detailed study revealed the formation of well‐formed hydration shells with characteristics that were significantly different to those of bulk water. To facilitate a robust comparison with state‐of‐the‐art X‐ray absorption fine structure (XAFS) data, we employ a 1st principles MD‐XAFS procedure and directly compare simulated and experimental XAFS spectra. A comparison of the data for the aqueous Ca2+ system with those of the recently reported Zn2+, Fe3+, and Al3+ species showed that many of their structural characteristics correlated well with charge density on the cation. Some very important exceptions were found, which indicated a strong sensitivity of the solvent structure towards the cation′s valence electronic structure. Average dipole moments for the 2nd shell of all cations were suppressed relative to bulk water.  相似文献   
108.
A short synthesis of tetramethyltetrathiafulvalene quadruply labeled with carbon-13 is described.  相似文献   
109.
Under conditions of collision‐induced dissociation (CID), anions of α‐hydroxycarboxylic acids usually fragment to yield the distinctive hydroxycarbonyl anion (m/z 45) and/or the complementary product anion formed by neutral loss of formic acid (46 u). Further support for the known two‐step mechanism, involving an ion‐neutral complex for the formation of the hydroxycarbonyl anion from the carboxyl group, is herein provided by tandem mass spectrometric results and density functional theory computations on the glycolate, lactate and 3‐phenyllactate ions. A fourth, structurally related α‐hydroxycarboxylate ion, obtained by deprotonation of mandelic acid, showed only loss of carbon dioxide upon CID. Density functional theory computations on the mandelate ion indicated that similar energy inputs were required for a direct, phenyl‐assisted decarboxylation and a postulated novel rearrangement to a carbonate ester, which yielded the benzyl oxide ion upon loss of CO2. Rearrangement of the glycolate ion led to expulsion of carbon monoxide, whereas the 3‐phenyllactate ion showed the loss of water and formation of the benzyl anion and the benzyl radical as competing processes. The fragmentation pathways proposed for lactate and 3‐phenyllactate are supported by isotopic labeling. The relative computed energies of saddle points and product ions for all proposed fragmentation pathways are consistent with the energies supplied during CID experiments and the observed relative intensities of product ions. The diverse reaction pathways characterized for this set of four α‐hydroxycarboxylate ions demonstrate that it is crucial to understand the effects of structural variations when attempting to predict the gas‐phase reactivity and CID spectra of carboxylate ions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
110.
In recent work, it was reported that changes in solvent composition, precisely the addition of water, significantly inhibits the catalytic activity of Au/TiO2 catalyst in the aerobic oxidation of 1,4‐butanediol in methanol due to changes in diffusion and adsorption properties of the reactant. In order to understand whether the inhibition mechanism of water on diol oxidation in methanol is generally valid, the solvent effect on the aerobic catalytic oxidation of 1,3‐propanediol and its two methyl‐substituted homologues, 2‐methyl‐1,3‐propanediol and 2,2‐dimethyl‐1,3‐propanediol, over a Au/TiO2 catalyst has been studied here using conventional catalytic reaction monitoring in combination with pulsed‐field gradient nuclear magnetic resonance (PFG‐NMR) diffusion and NMR relaxation time measurements. Diol conversion is significantly lower when water is present in the initial diol/methanol mixture. A reactivity trend within the group of diols was also observed. Combined NMR diffusion and relaxation time measurements suggest that molecular diffusion and, in particular, the relative strength of diol adsorption, are important factors in determining the conversion. These results highlight NMR diffusion and relaxation techniques as novel, non‐invasive characterisation tools for catalytic materials, which complement conventional reaction data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号