首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9088篇
  免费   310篇
  国内免费   75篇
化学   6625篇
晶体学   41篇
力学   205篇
数学   1353篇
物理学   1249篇
  2022年   45篇
  2021年   110篇
  2020年   145篇
  2019年   141篇
  2018年   102篇
  2017年   73篇
  2016年   220篇
  2015年   189篇
  2014年   222篇
  2013年   516篇
  2012年   538篇
  2011年   682篇
  2010年   307篇
  2009年   237篇
  2008年   519篇
  2007年   598篇
  2006年   626篇
  2005年   502篇
  2004年   458篇
  2003年   393篇
  2002年   361篇
  2001年   134篇
  2000年   88篇
  1999年   84篇
  1998年   80篇
  1997年   107篇
  1996年   115篇
  1995年   89篇
  1994年   78篇
  1993年   91篇
  1992年   77篇
  1991年   57篇
  1990年   84篇
  1989年   44篇
  1988年   61篇
  1987年   60篇
  1986年   73篇
  1985年   108篇
  1984年   107篇
  1983年   71篇
  1982年   96篇
  1981年   94篇
  1980年   95篇
  1979年   71篇
  1978年   88篇
  1977年   63篇
  1976年   59篇
  1975年   53篇
  1974年   33篇
  1973年   61篇
排序方式: 共有9473条查询结果,搜索用时 203 毫秒
991.
The methane and toluene monooxygenase hydroxylases (MMOH and TMOH, respectively) have almost identical active sites, yet the physical and chemical properties of their oxygenated intermediates, designated P*, H(peroxo), Q, and Q* in MMOH and ToMOH(peroxo) in a subclass of TMOH, ToMOH, are substantially different. We review and compare the structural differences in the vicinity of the active sites of these enzymes and discuss which changes could give rise to the different behavior of H(peroxo) and Q. In particular, analysis of multiple crystal structures reveals that T213 in MMOH and the analogous T201 in TMOH, located in the immediate vicinity of the active site, have different rotatory configurations. We study the rotational energy profiles of these threonine residues with the use of molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) computational methods and put forward a hypothesis according to which T213 and T201 play an important role in the formation of different types of peroxodiiron(III) species in MMOH and ToMOH. The hypothesis is indirectly supported by the QM/MM calculations of the peroxodiiron(III) models of ToMOH and the theoretically computed Mo?ssbauer spectra. It also helps explain the formation of two distinct peroxodiiron(III) species in the T201S mutant of ToMOH. Additionally, a role for the ToMOD regulatory protein, which is essential for intermediate formation and protein functioning in the ToMO system, is advanced. We find that the low quadrupole splitting parameter in the Mo?ssbauer spectrum observed for a ToMOH(peroxo) intermediate can be explained by protonation of the peroxo moiety, possibly stabilized by the T201 residue. Finally, similarities between the oxygen activation mechanisms of the monooxygenases and cytochrome P450 are discussed.  相似文献   
992.
The copper-catalyzed cycloaddition reaction between a propargyl-appended europium complex and azidomethylferrocene yields a d-f dyad whose photophysical properties can be reversibly switched by varying the oxidation state of the ferrocene chromophore.  相似文献   
993.
We report the rational synthesis of α-FeOOH (goethite) nanowires following a dislocation-driven mechanism by utilizing a continuous-flow reactor and chemical equilibria to maintain constant low supersaturations. The existence of axial screw dislocations and the associated Eshelby twist in the nanowire product were confirmed using bright-/dark-field transmission electron microscopy imaging and twist contour analysis. The α-FeOOH nanowires can be readily converted into semiconducting single-crystal but porous α-Fe(2)O(3) (hematite) nanowires via topotactic transformation. Our results indicate that, with proper experimental design, many more useful materials can be grown in one-dimensional morphologies in aqueous solutions via the dislocation-driven mechanism.  相似文献   
994.
Paine MR  Barker PJ  Blanksby SJ 《The Analyst》2011,136(5):904-912
Detection and characterisation of structural modifications of a hindered amine light stabiliser (HALS) directly from a polyester-based coil coating have been achieved by desorption electrospray ionisation mass spectrometry (DESI-MS) for the first time. In situ detection is made possible by exposing the coating to an acetone vapour atmosphere prior to analysis. This is a gentle and non-destructive treatment that allows diffusion of analyte to the surface without promoting lateral migration. Using this approach a major structural modification of the HALS TINUVIN?123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) was discovered where one N-ether piperidine moiety (N-OC(8)H(17)) is converted to a secondary piperidine (N-H). With the use of 2-dimensional DESI-MS imaging the modification was observed to arise during high curing temperatures (ca. 260 °C) and under simulated physiological conditions (80 °C, full solar spectrum). It is proposed that the secondary piperidine derivative is a result of a highly reactive aminyl radical intermediate produced by N-O homolytic bond cleavage. The nature of the bond cleavage is also suggested by ESR spin-trapping experiments employing α-phenyl-N-tert-butyl nitrone (PBN) in toluene at 80 °C. The presence of a secondary piperidine derivative in situ and the implication of N-OR competing with NO-R bond cleavage suggest an alternative pathway for generation of the nitroxyl radical-an essential requirement in anti-oxidant activity that has not previously been described for the N-ether sub-class of HALS.  相似文献   
995.
996.
We report a method for studying nanoparticle-biosensor surface interactions based on total internal reflection fluorescence (TIRF) microscopy. We demonstrate that this simple technique allows for high throughput screening of non-specific adsorption (NSA) of nanoparticles on surfaces of different chemical composition. Binding events between fluorescent nanoparticles and functionalized Zeonor? surfaces are observed in real-time, giving a measure of the attractive or repulsive properties of the surface and the kinetics of the interaction. Three types of coatings have been studied: one containing a polymerized aminosilane network with terminal -NH(2) groups, a second film with a high density of -COOH surface groups and the third with sterically restraining branched poly(ethylene)glycol (PEG) functionality. TIRF microscopy revealed that the NSA of nanoparticles with negative surface charge on such modified coatings decreased in the following order -NH(2)>-branched PEG>-COOH. The surface specificity of the technique also allows discrimination of the degree of NSA of the same surface at different pH.  相似文献   
997.
Femtosecond transient grating experiments are used to investigate electronic structures and transport mechanisms in dye-sensitized nanocrystalline TiO(2) films. This study examines two molecular sensitizers spanning the weak (a phosphonated Ruthenium complex) and strong (catechol) molecule-TiO(2) coupling regimes. It is shown that strong molecule-TiO(2) interactions give rise to photoinduced vibrational coherences at the interface between species. We suggest that the amplitudes of these coherences reflect the molecule-TiO(2) coupling strength and signify the delocalization of excited state wavefunctions.  相似文献   
998.
We compare, using single-particle optical imaging, trajectories of rotation and translation for micron-sized spheres in index-matched colloidal suspensions near their glass transition. Rotational trajectories, while they show intermittent caged behavior associated with supercooled and glassy behavior, explore a sufficiently wider phase space such that in the averaged mean-square angular displacement there appears no plateau regime, but instead sub-Fickian angular diffusion that follows an apparent power law in time. We infer translation and rotation time constants, the former being the time to diffuse a particle diameter and the latter being the time to rotate a full revolution. Correlation between time constants increases with increasing volume fraction, but unlike the case for molecular glasses, the rotation time constant slows more weakly than the translation time.  相似文献   
999.
Photoelectron angular distributions (PADs) are obtained for a pair of 4s(1)4p(6)6p(1) (a singlet and a triplet) autoionizing states in atomic krypton. A high-order harmonic pulse is used to excite the pair of states and a time-delayed 801 nm ionization pulse probes the PADs to the final 4s(1)4p(6) continuum with femtosecond time resolution. The ejected electrons are detected with velocity map imaging to retrieve the time-resolved photoelectron spectrum and PADs. The PAD for the triplet state is inherently separable by virtue of its longer autoionization lifetime. Measuring the total signal over time allows for the PADs to be extracted for both the singlet state and the triplet state. Anisotropy parameters for the triplet state are measured to be β(2)=0.55 ± 0.17 and β(4)=-0.01 ± 0.10, while the singlet state yields β(2)=2.19 ± 0.18 and β(4)=1.84 ± 0.14. For the singlet state, the ratio of radial transition dipole matrix elements, X, of outgoing S to D partial waves and total phase shift difference between these waves, Δ, are determined to be X=0.56 ± 0.08 and Δ=2.19 ± 0.11 rad. The continuum quantum defect difference between the S and D electron partial waves is determined to be -0.15 ± 0.03 for the singlet state. Based on previous analyses, the triplet state is expected to have anisotropy parameters independent of electron kinetic energy and equal to β(2)=5∕7 and β(4)=-12∕7. Deviations from the predicted values are thought to be a result of state mixing by spin-orbit and configuration interactions in the intermediate and final states; theoretical calculations are required to quantify these effects.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号