首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9117篇
  免费   273篇
  国内免费   78篇
化学   6651篇
晶体学   41篇
力学   205篇
数学   1360篇
物理学   1211篇
  2023年   35篇
  2022年   67篇
  2021年   110篇
  2020年   145篇
  2019年   141篇
  2018年   101篇
  2017年   74篇
  2016年   220篇
  2015年   190篇
  2014年   223篇
  2013年   514篇
  2012年   538篇
  2011年   681篇
  2010年   307篇
  2009年   237篇
  2008年   518篇
  2007年   598篇
  2006年   626篇
  2005年   502篇
  2004年   458篇
  2003年   393篇
  2002年   361篇
  2001年   134篇
  2000年   88篇
  1999年   84篇
  1998年   80篇
  1997年   107篇
  1996年   113篇
  1995年   84篇
  1994年   76篇
  1993年   90篇
  1992年   73篇
  1991年   56篇
  1990年   84篇
  1989年   44篇
  1988年   62篇
  1987年   64篇
  1986年   73篇
  1985年   108篇
  1984年   104篇
  1983年   70篇
  1982年   97篇
  1981年   95篇
  1980年   95篇
  1979年   68篇
  1978年   84篇
  1977年   62篇
  1976年   58篇
  1975年   52篇
  1973年   59篇
排序方式: 共有9468条查询结果,搜索用时 0 毫秒
991.
The conversion of binuclear complexes into larger molecular necklaces can be achieved through rigidifying flexible ligands by threading them through a crown ether to form either an interpenetrated [2]pseudorotaxane or a permanently interlocked [2]rotaxane. The resulting complexes and assemblies are characterized by 1H and DOSY NMR in solution and single‐crystal X‐ray diffraction in the solid‐state.  相似文献   
992.
The non‐enzymatic acylative kinetic resolution of challenging aryl–alkenyl (sp2 vs. sp2) substituted secondary alcohols is described, with effective enantiodiscrimination achieved using the isothiourea organocatalyst HyperBTM (1 mol %) and isobutyric anhydride. The kinetic resolution of a wide range of aryl–alkenyl substituted alcohols has been evaluated, with either electron‐rich or naphthyl aryl substituents in combination with an unsubstituted vinyl substituent providing the highest selectivity (S=2–1980). The use of this protocol for the gram‐scale (2.5 g) kinetic resolution of a model aryl–vinyl (sp2 vs. sp2) substituted secondary alcohol is demonstrated, giving access to >1 g of each of the product enantiomers both in 99:1 e.r.  相似文献   
993.
The CXCR4 chemokine receptor is implicated in a number of diseases including HIV infection and cancer development and metastasis. Previous studies have demonstrated that configurationally restricted bis‐tetraazamacrocyclic metal complexes are high‐affinity CXCR4 antagonists. Here, we present the synthesis of Cu2+ and Zn2+ acetate complexes of six cross‐bridged tetraazamacrocycles to mimic their coordination interaction with the aspartate side chains known to bind them to CXCR4. X‐ray crystal structures for three new Cu2+ acetate complexes and two new Zn2+ acetate complexes demonstrate metal‐ion‐dependent differences in the mode of binding the acetate ligand concomitantly with the requisite cis‐V‐configured cross‐bridged tetraazamacrocyle. Concurrent density functional theory molecular modelling studies produced an energetic rationale for the unexpected [Zn(OAc)(H2O)]+ coordination motif present in all of the Zn2+ cross‐bridged tetraazamacrocycle crystal structures, which differs from the chelating acetate [Zn(OAc)]+ structures of known unbridged and side‐bridged tetraazamacrocyclic Zn2+‐containing CXCR4 antagonists.  相似文献   
994.
The CH3 + OH bimolecular reaction and the dissociation of methanol are studied theoretically at conditions relevant to combustion chemistry. Kinetics for the CH3 + OH barrierless association reaction and for the H + CH2OH and H + CH3O product channels are determined in the high-pressure limit using variable reaction coordinate transition state theory and multireference electronic structure calculations to evaluate the fragment interaction energies. The CH3 + OH --> 3CH2 + H2O abstraction reaction and the H2 + HCOH and H2 + H2CO product channels feature localized dynamical bottlenecks and are treated using variational transition state theory and QCISD(T) energies extrapolated to the complete basis set limit. The 1CH2 + H2O product channel has two dynamical regimes, featuring both an inner saddle point and an outer barrierless region, and it is shown that a microcanonical two-state model is necessary to properly describe the association rate for this reaction over a broad temperature range. Experimental channel energies for the methanol system are reevaluated using the Active Thermochemical Tables (ATcT) approach. Pressure dependent, phenomenological rate coefficients for the CH3 + OH bimolecular reaction and for methanol decomposition are determined via master equation simulations. The predicted results agree well with experimental results, including those from a companion high-temperature shock tube determination for the decomposition of methanol.  相似文献   
995.
996.
Increased versatility for the synthesis of proteins and peptides by native chemical ligation requires the ability to ligate at positions other than Cys. Here, we report that Raney nickel can be used under standard conditions for the selective desulfurization of Cys in the presence of Cys(Acm). This simple and practical tactic enables the more common Xaa-Ala junctions to be used as ligation sites for the chemical synthesis of Cys-containing peptides and proteins. [reaction: see text].  相似文献   
997.
The c-kit oncogene is an important target in the treatment of gastrointestinal tumors. A potential approach to inhibition of the expression of this gene involves selective stabilization of G-quadruplex structures that may be induced to form in the c-kit promoter region. Here we report on the structure of an unprecedented intramolecular G-quadruplex formed by a G-rich sequence in the c-kit promoter in K+ solution. The structure represents a new folding topology with several unique features. Most strikingly, an isolated guanine is involved in G-tetrad core formation, despite the presence of four three-guanine tracts. There are four loops: two single-residue double-chain-reversal loops, a two-residue loop, and a five-residue stem-loop, which contain base-pairing alignments. This unique structural scaffold provides a highly specific platform for the future design of ligands specifically targeted to the promoter DNA of c-kit.  相似文献   
998.
The previously unknown radical anions of unsaturated E2N4S2 ring systems (E=RC, R2NC, R2P) can be generated voltammetrically by the one-electron reduction of the neutral species and, despite half-lives on the order of a few seconds, have been unambiguously characterized by electron paramagnetic resonance (EPR) spectroelectrochemistry using a highly sensitive in situ electrolysis cell. Cyclic voltammetric studies using a glassy-carbon working electrode in CH3CN and CH2Cl2 with [nBu4N][PF6] as the supporting electrolyte gave reversible formal potentials for the [E2N4S2]0/- process in the range of -1.25 to -1.77 V and irreversible peak potentials for oxidation in the range of 0.66 to 1.60 V (vs the Fc+/0 couple; Fc=ferrocene). Reduction of the neutral compound undergoes an electrochemically reversible one-electron transfer, followed by the decay of the anion to an unknown species via a first-order (chemical) reaction pathway. The values of the first-order rate constant, kf, for the decay of all the radical anions in CH2Cl2 have been estimated from the decay of the EPR signals for (X-C6H4CN2S)2*-, where X=4-OCH3 (kf=0.04 s(-1)), 4-CH3 (kf=0.02 s(-1)), 4-H (kf=0.08 s(-1)), 4-Cl (kf=0.05 s(-1)), 4-CF3 (kf=0.05 s(-1)), or 3-CF3 (kf=0.07 s(-1)), and for [(CH3)3CCN2S]2*- (kf=0.02 s(-1)), [(CH3)2NCN2S]2*- (kf=0.05 s(-1)), and [(C6H5)2PN2S]2*- (kf=0.7 s(-1)). Values of kf for X=4-H and for [(CH3)2NCN2S]2*- were also determined from the cyclic voltammetric responses (in CH2Cl2) and were both found to be 0.05 s(-1). Possible pathways for the first-order anion decomposition that are consistent with the experimental observations are discussed. Density functional theory calculations at the UB3LYP/6-31G(d) level of theory predict the structures of the radical anions as either planar (D2h) or folded (C2v) species; the calculated hyperfine coupling constants are in excellent agreement with experimental results. Linear correlations were observed between the voltammetrically determined potentials and both the orbital energies and Hammett coefficients for the neutral aryl-substituted rings.  相似文献   
999.
Design of a superhydrophobic surface using woven structures   总被引:2,自引:0,他引:2  
The relationship between surface tension and roughness is reviewed. The Cassie-Baxter model is restated in its original form, which better describes the most general cases of surface roughness. Using mechanical and chemical surface modification of nylon 6,6 woven fabric, an artificial superhydrophobic surface was prepared. A plain woven fabric mimicking the Lotus leaf was created by further grafting 1H,1H-perfluorooctylamine or octadecylamine to poly(acrylic acid) chains which had previously been grafted onto a nylon 6,6 woven fabric surface. Water contact angles as high as 168 degrees were achieved. Good agreement between the predictions based on the original Cassie-Baxter model and experiments was obtained. The version of the Cassie-Baxter model in current use could not be applied to this problem since the surface area fractions in this form is valid only when the liquid is in contact with a flat, porous surface. The angle at which a water droplet rolls off the surface has also been used to define a superhydrophobic surface. It is shown that the roll-off angle is highly dependent on droplet size. The roll-off angles of these superhydrophobic surfaces were less than 5 degrees when a 0.5 mL water droplet was applied.  相似文献   
1000.
The reaction between oxide-centered, triangular [MnIII3O(O2CR)6(py)3](ClO4) (R = Me (1), Et (2), Ph (3)) compounds and methyl 2-pyridyl ketone oxime (mpkoH) affords a new family of Mn/carboxylato/oximato complexes, [MnIII3O(O2CR)3(mpko)3](ClO4) [R = Me (4), Et (5), and Ph (6)]. As in 1-3, the cations of 4-6 contain an [MnIII3(mu3-O)]7+ triangular core, but with each Mn2 edge now bridged by an eta1:eta1:mu-RCO2- and an eta1:eta1:eta1:mu-mpko- group. The tridentate binding mode of the latter causes a buckling of the formerly planar [MnIII3(mu3-O)]7+ core, resulting in a relative twisting of the three MnIII octahedra and the central O2- ion now lying approximately 0.3 A above the Mn3 plane. This structural distortion leads to ferromagnetic exchange interactions within the molecule and a resulting S = 6 ground state. Fits of dc magnetization data for 4-6 collected in the 1.8-10.0 K and 10-70 kG ranges confirmed S = 6 ground states, and gave the following D and g values: -0.34 cm(-1) and 1.92 for 4, -0.34 cm(-1) and 1.93 for 5, and -0.35 cm(-1) and 1.99 for 6, where D is the axial zero-field splitting (anisotropy) parameter. Complexes 4-6 all exhibit frequency-dependent out-of-phase (chi" M) ac susceptibility signals suggesting them possibly to be single-molecule magnets (SMMs). Relaxation rate vs T data for complex 4 down to 1.8 K obtained from the chi" M vs T studies were supplemented with rate vs T data measured to 0.04 K via magnetization vs time decay studies, and these were used to construct Arrhenius plots from which was obtained the effective barrier to relaxation (Ueff) of 10.9 K. Magnetization vs dc field sweeps on single-crystals of 4.3CH2Cl2 displayed hysteresis loops exhibiting steps due to quantum tunneling of magnetization (QTM). The loops were essentially temperature-independent below approximately 0.3 K, indicating only ground-state QTM between the lowest-lying Ms = +/-6 levels. Complexes 4-6 are thus confirmed as the first triangular SMMs. High-frequency EPR spectra of single crystals of 4.3CH2Cl2 have provided precise spin Hamiltonian parameters, giving D = -0.3 cm(-1), B40 = -3 x 10(-5) cm(-1), and g = 2.00. The spectra also suggest a significant transverse anisotropy of E > or = 0.015 cm(-1). The combined work demonstrates the feasibility that structural distortions of a magnetic core imposed by peripheral ligands can "switch on" the properties of an SMM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号