首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3077篇
  免费   194篇
  国内免费   17篇
化学   2124篇
晶体学   18篇
力学   77篇
数学   524篇
物理学   545篇
  2023年   33篇
  2022年   27篇
  2021年   54篇
  2020年   72篇
  2019年   88篇
  2018年   43篇
  2017年   45篇
  2016年   127篇
  2015年   130篇
  2014年   140篇
  2013年   181篇
  2012年   235篇
  2011年   263篇
  2010年   135篇
  2009年   123篇
  2008年   208篇
  2007年   154篇
  2006年   149篇
  2005年   130篇
  2004年   127篇
  2003年   90篇
  2002年   82篇
  2001年   53篇
  2000年   48篇
  1999年   36篇
  1998年   31篇
  1997年   35篇
  1996年   47篇
  1995年   47篇
  1994年   37篇
  1993年   34篇
  1992年   26篇
  1991年   19篇
  1990年   16篇
  1989年   14篇
  1988年   13篇
  1987年   15篇
  1986年   13篇
  1985年   23篇
  1984年   12篇
  1983年   10篇
  1982年   14篇
  1981年   7篇
  1980年   6篇
  1978年   10篇
  1977年   7篇
  1976年   8篇
  1975年   7篇
  1973年   10篇
  1971年   7篇
排序方式: 共有3288条查询结果,搜索用时 15 毫秒
71.
72.
The determination of carbonyl compounds in gaseous samples is usually accomplished by enrichment methods, in which 2,4-dinitrophenyl-hydrazine (DNPH) as a derivatization reagent has become established to a large extent. However, the conventional methods of DNPH-impingers and of DNPH-cartridges are applicable to emission measurements in a limited way only, depending on the NO2-concentration in the exhaust gas. It could be proved that DNPH-derivatives, as well as DNPH, are also decomposed by NO2 at a different speed, in which the hydrazones of unsaturated carbonyl compounds are probably more sensitive than those of the saturated carbonyl compounds. In view of this fact, the collecting methods had to be modified to avoid losses with the enrichment. The analysis of the compounds is carried out by HPLC with an effective gradient-system which is able to separate and detect the carbonyl compounds in exhaust gas within 16 min. Furthermore, a simple working-up procedure is presented which facilitates a parallel analysis by GC.  相似文献   
73.
The reaction of primary alkyl bromides or chlorides with diethylzinc in the presence of Ni(acac)(2) (5 mol %) furnishes the corresponding alkylzinc halides (X = Br, Cl) via a halogen-zinc exchange reaction. The treatment of terminal alkenes with diethylzinc (neat, 25-60 degrees C) in the presence of Ni(acac)(2) as a catalyst (1-5 mol %) and 1,5-cyclooctadiene (COD) affords the corresponding dialkylzincs via a hydrozincation reaction. Whereas the conversion for simple alkenes bearing a remote functionality reaches 40 to 63%, the hydrozincation of allylic, homoallylic alcohols and allylic amines proceeds very efficiently (85-95% conversion). All the zinc organometallics obtained react with various electrophiles (allylic halides, enones, acid chlorides, alkynyl halides, ethyl propiolate) after transmetalation with CuCN.2LiCl. In the presence of the chiral catalyst 12, the dialkylzincs prepared add to aldehydes with high enantioselectivity.  相似文献   
74.
Catechol and amine residues, both abundantly present in mussel adhesion proteins, are known to act cooperatively by displacing hydration barriers before binding to mineral surfaces. In spite of synthetic efforts toward mussel-inspired adhesives, the effect of positioning of the involved functional groups along a polymer chain is not well understood. By using sequence-defined oligomers grafted to soft hydrogel particles as adhesion probes, we study the effect of catechol–amine spacing, as well as positioning relative to the oligomer terminus. We demonstrate that the catechol–amine spacing has a significant effect on adhesion, while shifting their position has a small effect. Notably, combinations of non-charged amides and catechols can achieve similar cooperative effects on adhesion when compared to amine and catechol residues. Thus, these findings provide a blueprint for the design of next generation mussel-inspired adhesives.

The catechol driven adhesion of precision macromolecules on glass surfaces is quantified by soft colloidal probe readout. Catechol moieties are shown to synergize with amine and amide residues depending on residue spacing and residue order.  相似文献   
75.
Convenient high-yield syntheses of the primary and di-primary heteroaryl-phosphines R-PH2 and H2P-R'-PH2(with R = 2-thienyl, 2-furyl, and R'= 2,5-thiophenediyl, 2,5-furandiyl, respectively) are presented. The products and a set of precursor molecules have been characterized by analytical and spectral data, and the crystal structures of selected molecules have been determined: 2-C4H3O-PCl2, 2,5-(Cl2P)2C4H2O, 2,5-[(Et2N)2P]2C4H2E (with E = O, S). In the crystals, the two molecules with -PCl2 substituents adopt trans conformations, while the other two have the -P(NEt2)2 groups rotated into a twist conformation. The reaction of the thienyl compounds with tris[(tert-phosphine)gold]oxonium tetrafluoroborates gave almost quantitative yields of the tri- and hexanuclear gold complexes, respectively: {2-C4H3S-P[Au(PR3)]3}+BF4- and [2,5-{[(R3P)Au]3P}2C4H2S]2+(BF4(-)2, (R =tBu, Ph). The structures of the compounds with R3P =tBu3P ligands have been determined. In both cases the [2-C4H3/2S-P] units cap triangles of gold atoms in an array that can be described as three [Au(PR3)]+ cations bridged by a phosphido dianion (RP)2-.  相似文献   
76.
Voltage-gated Na+ (NaV) channels are significant therapeutic targets for the treatment of cardiac and neurological disorders, thus promoting the search for novel NaV channel ligands. With the objective of discovering new blockers of NaV channel ligands, we screened an In-House vegetal alkaloid library using fluorescence cell-based assays. We screened 62 isoquinoline alkaloids (IA) for their ability to decrease the FRET signal of voltage sensor probes (VSP), which were induced by the activation of NaV channels with batrachotoxin (BTX) in GH3b6 cells. This led to the selection of five IA: liriodenine, oxostephanine, thalmiculine, protopine, and bebeerine, inhibiting the BTX-induced VSP signal with micromolar IC50. These five alkaloids were then assayed using the Na+ fluorescent probe ANG-2 and the patch-clamp technique. Only oxostephanine and liriodenine were able to inhibit the BTX-induced ANG-2 signal in HEK293-hNaV1.3 cells. Indeed, liriodenine and oxostephanine decreased the effects of BTX on Na+ currents elicited by the hNaV1.3 channel, suggesting that conformation change induced by BTX binding could induce a bias in fluorescent assays. However, among the five IA selected in the VSP assay, only bebeerine exhibited strong inhibitory effects against Na+ currents elicited by the hNav1.2 and hNav1.6 channels, with IC50 values below 10 µM. So far, bebeerine is the first BBIQ to have been reported to block NaV channels, with promising therapeutical applications.  相似文献   
77.
Low water vapor and air permeability is a persistent challenge in wearable and on-skin electronics, as it reduces wearing comfort, and leads to skin irritation and inflammation in the long term. To tackle this issue, Zheng and coworkers designed a stretchable conductor based on an elastomeric fiber mat coated by liquid metal. After simple activation via stretching, the flexible conductor was endowed with excellent permeability, good stretchability, exceptional electrical stability, and good biocompatibility, ascribed to the mesh-like structure and the vertically buckled structure of the liquid metal. Based on the intriguing properties of the material, it was employed in a multi-functional wearable device, able to detect the heartbeat and sweat while serving as a heating device. The corresponding research has been published in Nature Materials and can be accessed at https://doi.org/10.1038/s41563-020-00902-3.  相似文献   
78.
79.
Understanding the key steps that drive the laser-based synthesis of colloids is a prerequisite for learning how to optimize the ablation process in terms of nanoparticle output and functional design of the nanomaterials. Even though many studies focus on cavitation bubble formation using single-pulse ablation conditions, the ablation efficiency and nanoparticle properties are typically investigated under prolonged ablation conditions with repetition rate lasers. Linking single-pulse and multiple-pulse ablation is difficult due to limitations induced by gas formation cross-effects, which occur on longer timescales and depend on the target materials’ oxidation-sensitivity. Therefore, this study investigates the ablation and cavitation bubble dynamics under nanosecond, single laser pulse conditions for six different bulk materials (Au, Ag, Cu, Fe, Ti, and Al). Also, the effective threshold fluences, ablation volumes, and penetration depths are quantified for these materials. The thermal and chemical properties of the corresponding bulk materials not only favor the formation of larger spot sizes but also lead to the highest molar ablation efficiencies for low melting materials such as aluminum. Furthermore, the concept of the cavitation bubble growth linked with the oxidation sensitivity of the ablated material is discussed. With this, evidence is provided that intensive chemical reactions occurring during the very early timescale of ablation are significantly enhanced by the bubble collapse.  相似文献   
80.
Peptidylarginine deiminase 4 (PAD4), also known as protein arginine deiminase 4, performs a post-translational deimination that converts arginine to citrulline. The dysregulation of PAD4 has been implicated in a number of diseases, including rheumatoid arthritis (RA) and cancer. This makes PAD4 an important therapeutic target. To develop small-molecule inhibitors as potential treatments, it is advantageous if the catalytic mechanism is well understood. The protonation states of the active site residues, which have long been under controversy, have a direct impact on the catalytic mechanism. Two competing mechanisms are under investigation in the current literature. The first is a reverse protonation mechanism that depends on the active site histidine and cysteine existing as an ion pair. The second is a substrate-assisted mechanism that depends on the active site histidine and cysteine being neutral. This study uses the semimicroscopic protein dipoles Langevin dipoles (PDLD/S) linear response approximation method in the MOLARIS software package to calculate the change in solvation energy of moving the residue from water to the protein interior, and then using that information to assess the protonation states of the active site residues of PAD4. Results from these calculations suggest that in the enzyme–substrate complex of PAD4, the cysteine and histidine are protonated and deprotonated, respectively, and are therefore both neutral, analogous to the proposed protonation states of the active site residues in the Michaelis complex in the substrate-assisted mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号