首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3899篇
  免费   91篇
  国内免费   25篇
化学   2421篇
晶体学   16篇
力学   171篇
数学   568篇
物理学   839篇
  2024年   5篇
  2023年   40篇
  2022年   86篇
  2021年   122篇
  2020年   105篇
  2019年   83篇
  2018年   63篇
  2017年   51篇
  2016年   142篇
  2015年   110篇
  2014年   146篇
  2013年   201篇
  2012年   257篇
  2011年   291篇
  2010年   164篇
  2009年   143篇
  2008年   227篇
  2007年   238篇
  2006年   237篇
  2005年   219篇
  2004年   181篇
  2003年   151篇
  2002年   146篇
  2001年   64篇
  2000年   28篇
  1999年   37篇
  1998年   39篇
  1997年   40篇
  1996年   41篇
  1995年   25篇
  1994年   28篇
  1993年   28篇
  1992年   16篇
  1991年   25篇
  1990年   13篇
  1989年   16篇
  1988年   16篇
  1987年   17篇
  1986年   17篇
  1985年   16篇
  1984年   20篇
  1983年   14篇
  1982年   17篇
  1981年   21篇
  1980年   10篇
  1979年   14篇
  1978年   8篇
  1977年   10篇
  1976年   6篇
  1975年   12篇
排序方式: 共有4015条查询结果,搜索用时 0 毫秒
161.
Online weighted flow time and deadline scheduling   总被引:1,自引:0,他引:1  
In this paper we study some aspects of weighted flow time. We first show that the online algorithm Highest Density First is an O(1)-speed O(1)-approximation algorithm for P|ri,pmtn|∑wiFi. We then consider a related Deadline Scheduling Problem that involves minimizing the weight of the jobs unfinished by some unknown deadline D on a uniprocessor. We show that any c-competitive online algorithm for weighted flow time must also be c-competitive for deadline scheduling. We then give an O(1)-competitive algorithm for deadline scheduling.  相似文献   
162.
This paper reports that monitoring the composition of the c(0 0 0 1), a(11–20) and m(10–10) sapphire surfaces is essential for a proper interpretation of the surface morphologies obtained after annealing at 1253 and 1473 K in ArH2 or ArO2 atmospheres. Our experimental investigations, which have used Auger electron spectroscopy (AES) and atomic force microscopy (AFM) on the surfaces of 99.99% pure sapphire wafers, have led to the following original conclusions: (i) Calcium segregates at the c-surface of sapphire both under ArO2 and ArH2. (ii) Potassium adsorption enhances the kinetics of step-bunching on the c-surface under ArO2. (iii) The step edges on the a-surface may develop a comb-like morphology made of parallel strips along the [10–10] direction. (iv) At 1253 K, clean m-surfaces may be stable. (v) Under ArH2, alumina surface diffusion is much slower than under ArO2 for all surface orientations, the surface concentration of impurities is low, and the Al–O ratio of the AES signals at the surface is significantly larger.  相似文献   
163.
164.
AA8xxx alloys employed in the HVAC&R sector (heating, ventilating, air conditioning, and refrigerating) were investigated to highlight the effect of active surface layers in heat-exchanger fins. The local behavior of the surface and the bulk of the alloy sheets was studied by means of an electrochemical microcell in combination with glow-discharge optical-emission spectrometry. Surface layers strongly enhance the electrochemical activity of the fin material. This is related to the segregation of Mg and other elements (Sn) strongly impairing the protective behavior of the oxide film generated during thermomechanical processing.  相似文献   
165.
With the aim of generating new, thermally inaccessible diradicals, potentially able to induce a double-strand DNA cleavage, the photochemistry of a set of chloroaryl-substituted carboxylic acids in polar media was investigated. The photoheterolytic cleavage of the Ar−Cl bond occurred in each case to form the corresponding triplet phenyl cations. Under basic conditions, the photorelease of the chloride anion was accompanied by an intramolecular electron-transfer from the carboxylate group to the aromatic radical cationic site to give a diradical species. This latter intermediate could then undergo CO2 loss in a structure-dependent fashion, according to the stability of the resulting diradical, or abstract a hydrogen atom from the medium. In aqueous environment at physiological pH (pH=7.3), both a phenyl cation and a diradical chemistry was observed. The mechanistic scenario and the role of the various intermediates (aryl cations and diradicals) involved in the process was supported by computational analysis.  相似文献   
166.
A combinatorial screening revealed the peptide H‐His‐d ‐Leu‐d ‐Asp‐NH2 ( 1 ) as an additive for the generation of monodisperse, water‐soluble palladium nanoparticles with average diameters of 3 nm and stabilities of over 9 months. The tripeptide proved to be also applicable for the size‐controlled formation of other noble‐metal nanoparticles (Pt and Au). Studies with close analogues of peptide 1 revealed a specific role of each of the three amino acids for the formation and stabilization of the nanoparticles. These data combined with microscopic and spectroscopic analyses provided insight into the structure of the self‐assembled peptidic monolayer around the metal core. The results open interesting prospects for the development of functionalized metal nanoparticles.  相似文献   
167.
Interactions between myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate) (phytic acid) and cadmium(II) were studied by using potentiometry (at 25 °C with the ISE-H+ glass electrode) in different metal to ligand (Phy) ratios (1:1≤Cd2+:Phy≤4:1) in NaClaq at different ionic strengths (0.1≤I/mol L−1≤1). Nine CdiHjPhy(12−2i−j)− species are formed with i=1 and 2 and 4≤j≤7; and trinuclear Cd3H4Phy2−. Dependence of complex formation constants on ionic strength was modeled by using Specific ion Interaction Theory (SIT) equations. Phytate and cadmium speciation are also dependent on the metal to ligand ratio. Stability of CdiHjPhy(12−2i−j)− species was modeled as a function of both the ligand protonation step (j) and the number of metal cations bound to phytate (i), and relationships found were used for the prediction of species other than those experimentally determined (mainly di- and tri-protonated complexes), allowing the possibility of modeling Phy and Cd(II) behavior in natural waters and biological fluids. A critical evaluation of phytate sequestering ability toward cadmium(II) has been made under several experimental conditions, and the determination of an empirical parameter has been proposed for an objective “quantification” of this ability. A thorough analysis of literature data on phytate–cadmium(II) complexes has been performed. Previous contributions to this series: [18]  相似文献   
168.
This review describes specific strategies for targeting to the central nervous system (CNS). Systemically administered drugs can reach the brain by crossing one of two physiological barriers resistant to free diffusion of most molecules from blood to CNS: the endothelial blood-brain barrier or the epithelial blood-cerebrospinal fluid barrier. These tissues constitute both transport and enzymatic barriers. The most common strategy for designing effective prodrugs relies on the increase of parent drug lipophilicity. However, increasing lipophilicity without a concomitant increase in rate and selectivity of prodrug bioconversion in the brain will result in failure. In these regards, consideration of the enzymes present in brain tissue and in the barriers is essential for a successful approach. Nasal administration of lipophilic prodrugs can be a promising alternative non-invasive route to improve brain targeting of the parent drugs due to fast absorption and rapid onset of drug action. The carrier-mediated absorption of drugs and prodrugs across epithelial and endothelial barriers is emerging as another novel trend in biotherapeutics. Several specific transporters have been identified in boundary tissues between blood and CNS compartments. Some of them are involved in the active supply of nutrients and have been used to explore prodrug approaches with improved brain delivery. The feasibility of CNS uptake of appropriately designed prodrugs via these transporters is described in detail.  相似文献   
169.
Ongoing efforts to model P2Y receptors for extracellular nucleotides, i.e., endogenous ADP, ATP, UDP, UTP, and UDP-glucose, were summarized and correlated for the eight known subtypes. The rhodopsin-based homology modeling of the P2Y receptors is supported by a growing body of site-directed mutagenesis data, mainly for P2Y1 receptors. By comparing molecular models of the P2Y receptors, it was concluded that nucleotide binding could occur in the upper part of the helical bundle, with the ribose moiety accommodated between transmembrane domain (TM) 3 and TM7. The nucleobase was oriented towards TM1, TM2, and TM7, in the direction of the extracellular side of the receptor. The phosphate chain was oriented towards TM6, in the direction of the extracellular loops (ELs), and was coordinated by three critical cationic residues. In particular, in the P2Y1, P2Y2, P2Y4, and P2Y6 receptors the nucleotide ligands had very similar positions. ADP in the P2Y12 receptor was located deeper inside the receptor in comparison to other subtypes, and the uridine moiety of UDP-glucose in the P2Y14 receptor was located even deeper and shifted toward TM7. In general, these findings are in agreement with the proposed binding site of small molecules to other class A GPCRs.  相似文献   
170.
Rotation about the Ar-S bond in ortho-(alkylthio)phenols strongly affects the bond dissociation enthalpy (BDE) and the reactivity of the OH group. Newly synthesized sulfur containing heterocycles 3 and 4, where the -SR group is almost coplanar with the phenolic ring, are characterized by unusually low BDE(O-H) values (79.6 and 79.2 kcal/mol, respectively) and by much higher reactivities toward peroxyl radicals than the ortho-methylthio derivative 1 (82.0 kcal/mol). The importance of the intramolecular hydrogen bond (IHB) in determining the BDE(O-H) was demonstrated by FT-IR experiments, which showed that in heterocycles 3 and 4 the IHB between the phenolic OH group and the S atom is much weaker than that present in 1. Since the IHB can be formed only if the -SR group adopts an out-of-plane geometry, this interaction is possible only in the methylthio derivative 1 and not in 3 and 4. The additive contribution to the phenolic BDE(O-H) of the -SR substituent therefore varies from -3.1 to +2.8 kcal/mol for the in-plane and out-of-plane conformations, respectively. These results may be relevant to understanding the role of the tyrosine-cysteine link in the active site of galactose oxidase, an important enzyme that catalyzes the two-electron aerobic oxidation of primary alcohols to aldehydes. The switching of the ortho -SR substituent between perpendicular and planar conformations may account for the catalytic efficiency of this enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号