首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9514篇
  免费   463篇
  国内免费   43篇
化学   6600篇
晶体学   24篇
力学   233篇
数学   1506篇
物理学   1657篇
  2023年   82篇
  2022年   97篇
  2021年   146篇
  2020年   197篇
  2019年   206篇
  2018年   123篇
  2017年   132篇
  2016年   389篇
  2015年   336篇
  2014年   319篇
  2013年   530篇
  2012年   595篇
  2011年   720篇
  2010年   410篇
  2009年   349篇
  2008年   565篇
  2007年   519篇
  2006年   489篇
  2005年   453篇
  2004年   389篇
  2003年   347篇
  2002年   328篇
  2001年   197篇
  2000年   155篇
  1999年   133篇
  1998年   109篇
  1997年   122篇
  1996年   131篇
  1995年   106篇
  1994年   87篇
  1993年   88篇
  1992年   78篇
  1991年   58篇
  1990年   58篇
  1989年   63篇
  1988年   51篇
  1987年   46篇
  1986年   45篇
  1985年   47篇
  1984年   50篇
  1983年   35篇
  1982年   40篇
  1981年   33篇
  1980年   46篇
  1978年   65篇
  1977年   38篇
  1976年   36篇
  1975年   40篇
  1974年   33篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The first synthesis of 4,5-bis-(dimethylamino)-substituted imidazolium compounds was developed, which is based on the reaction of a 1,2-diamino-1,2-bis(phosphonio)ethene with lithiated formamidines. This represents the first application of this class of ethene derivatives for the preparation of heterocycles. These N-heterocyclic carbene (NHC) precursors show a remarkably reduced basicity and nucleophilicity of their NMe2 groups, which is due to the strong anomeric interactions of the latter with the imidazolium core. According to DFT calculations, these NHCs are capable of self-umpolung if sufficiently strong acceptor substituents are introduced at the carbene center. To test the self-umpolung capabilities of the NHCs, various substituents were attached to the carbene center and the obtained compounds were characterized by single-crystal X-ray analysis as well as quantum chemical computations. Strong acceptor substituents are required to induce self-umpolung, such as in the phosphonio-substituted derivative, for which partial self-umpolung was found. The N,N′-bis(4-dimethylaminophenyl)-substituted imidazolium compound represents a special case, as it incorporates as much as three two-step redox systems within the NHC framework. This will probably result in a high electronic flexibility of the corresponding nucleophilic carbenes, especially when they serve as ligands in transition metal complexes.  相似文献   
992.
Cellulose nanofibrils were prepared by mechanical fibrillation of never-dried beech pulp and bacterial cellulose. To facilitate the separation of individual fibrils, one part of the wood pulp was surface-carboxylated by a catalytic oxidation using (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as a catalyst. After fibrillation by a high pressure homogenizer, the obtained aqueous fibril dispersions were directly mixed with different urea–formaldehyde-(UF)-adhesives. To investigate the effect of added cellulose filler on the fracture mechanical properties of wood adhesive bonds, double cantilever beam specimens were prepared from spruce wood. While the highest fracture energy values were observed for UF-bonds filled with untreated nanofibrils prepared from wood pulp, bonds filled with TEMPO-oxidized fibrils showed less satisfying performance. It is proposed that UF-adhesive bonds can be significantly toughened by the addition of only small amounts of cellulose nanofibrils. Thereby, the optimum filler content is largely depending on the adhesive and type of cellulose filler used.  相似文献   
993.
Vesicles assembled from amphiphilic block copolymers represent promising nanomaterials for applications that include drug delivery and surface functionalization. One essential requirement to guide such polymersomes to a desired site in vivo is conjugation of active, targeting ligands to the surface of preformed self-assemblies. Such conjugation chemistry must fulfill criteria of efficiency and selectivity, stability of the resulting bond, and biocompatibility. We have here developed a new system that achieves these criteria by simple conjugation of 4-formylbenzoate (4FB) functionalized polymersomes with 6-hydrazinonicotinate acetone hydrazone (HyNic) functionalized antibodies in aqueous buffer. The number of available amino groups on the surface of polymersomes composed of poly(dimethylsiloxane)-block-poly(2-methyloxazoline) diblock copolymers was investigated by reacting hydrophilic succinimidyl-activated fluorescent dye with polymersomes and evaluating the resulting emission intensity. To prove attachment of biomolecules to polymersomes, HyNic functionalized enhanced yellow fluorescent protein (eYFP) was attached to 4FB functionalized polymersomes, resulting in an average number of 5 eYFP molecules per polymersome. Two different polymersome-antibody conjugates were produced using either antibiotin IgG or trastuzumab. They showed specific targeting toward biotin-patterned surfaces and breast cancer cells. Overall, the polymersome-ligand platform appears promising for therapeutic and diagnostic use.  相似文献   
994.
High-pressure synthesis allows both fundamental and materials science research to gain unprecedented insight into the inner nature of materials properties at extreme environment conditions. Here, we report on the high-pressure synthesis and characterization of γ-Ca(3)N(2) and the high-pressure behavior of Mg(3)N(2). Investigation of M(3)N(2) (M = Ca, Mg) at high-pressure has been quite challenging due to the high reactivity of these compounds. Ex situ experiments have been performed using a multianvil press at pressures from 8 to 18 GPa (1000-1200 °C). Additional in situ experiments from 0 to 6 GPa (at RT) at the multianvil press MAX 80 (HASYLAB, Beamline F.2.1, Hamburg) have been carried out. The new cubic high-pressure phase γ-Ca(3)N(2) with anti-Th(3)P(4) defect structure exhibits a significant increase in coordination numbers compared to α-Ca(3)N(2). Contrary, Mg(3)N(2) shows decomposition starting at surprisingly low pressures, thereby acting as a precursor for Mg nanoparticle formation with bcc structure. Soft X-ray spectroscopy in conjunction with first principles DFT calculations have been used to explore the electronic structure and show that γ-Ca(3)N(2) is a semiconductor with inherent nitrogen vacancies.  相似文献   
995.
Recently, we have described the metal-organic framework Ni(2)(2,6-ndc)(2)(dabco), denoted as DUT-8(Ni) (1) (DUT = Dresden University of Technology, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane). Upon adsorption of molecules such as nitrogen and xenon, this material exhibits a pronounced gate-pressure effect which is accompanied by a large change of the specific volume. Here, we describe the use of high-pressure in situ (129)Xe NMR spectroscopy, i.e., the NMR spectroscopic measurements of xenon adsorption/desorption isotherms and isobars, to characterize this effect. It appears that the pore system of DUT-8(Ni) takes up xenon until a liquid-like state is reached. Deeper insight into the interactions between the host DUT-8(Ni) and the guest atom xenon is gained from ab initio molecular dynamics (MD) simulations. van der Waals interactions are included for the first time in these calculations on a metal-organic framework compound. MD simulations allow the identification of preferred adsorption sites for xenon as well as insight into the breathing effect at a molecular scale. Grand canonical Monte Carlo (GCMC) simulations have been performed in order to simulate adsorption isotherms. Furthermore, the favorable influence of a sample pretreatment using solvent exchange and drying with supercritical CO(2) as well as the influence of repeated pore opening/closure processes, i.e., the "aging behavior" of the compound, can be visualized by (129)Xe NMR spectroscopy.  相似文献   
996.
Facile access to complex systems is crucial to generate the functional materials of the future. Herein, we report self-organizing surface-initiated polymerization (SOSIP) as a user-friendly method to create ordered as well as oriented functional systems on transparent oxide surfaces. In SOSIP, self-organization of monomers and ring-opening disulfide exchange polymerization are combined to ensure the controlled growth of the polymer from the surface. This approach provides rapid access to thick films with smooth, reactivatable surfaces and long-range order with few defects and high precision, including panchromatic photosystems with oriented four-component redox gradients. The activity of SOSIP architectures is clearly better than that of disordered controls.  相似文献   
997.
Trivalent silicon cations are exceptionally strong electron pair acceptors that react, either desired or undesired, with almost any σ and π basic molecule. One way of intramolecular attenuation of the Lewis acidity of these superelectrophiles is by installation of a ferrocene unit at the electron-deficient silicon atom. While well-understood for isoelectronic α-ferrocenyl-substituted carbenium ions and also boranes, the stabilizing interactions between the ferrocene backbone and a positively charged silicon atom are not clear due to the challenge of crystallizing such cations. The structural characterization of our ferrocene-stabilized silicon cation now reveals an unprecedented bonding motif different from its analogues. An extreme dip angle of the silicon atom toward the iron atom is explained by two three-center-two-electron (3c2e) bonds through participation of both the upper and the lower aromatic rings of the ferrocene sandwich structure. The positive charge is still localized at the silicon atom that also retains a quasi-planar configuration.  相似文献   
998.
We present a neutron reflectivity study on interfaces in contact with flowing hexadecane, which is known to exhibit surface slip on functionalized solid surfaces. The single crystalline silicon substrates were either chemically cleaned Si(100) or Si(100) coated by octadecyl-trichlorosilane (OTS), which resulted in different interfacial energies. The liquid was sheared in situ and changes in reflectivity profiles were compared to the static case. For the OTS surface, the temperature dependence was also recorded. For both types of interfaces, density depletion of the liquid at the interface was observed. In the case of the bare Si substrate, shear load altered the structure of the depletion layer, whereas for the OTS covered surface no effect of shear was observed. Possible links between the depletion layer and surface slip are discussed. The results show that, in contrast to water, for hexadecane the enhancement of the depletion layer with temperature and interfacial energy reduces the amount of slip. Thus a density depletion cannot be the origin of surface slip in this system.  相似文献   
999.
We use a coarse grained protein model that enables us to determine the equilibrium phase diagram of natively folded α-helical and unfolded β-sheet forming peptides. The phase diagram shows that there are only two thermodynamically stable peptide phases, the peptide solution and the bulk fibrillar phase. In addition, it reveals the existence of various metastable peptide phases. The liquidlike oligomeric phases are metastable with respect to the fibrillar phases, and there is a hierarchy of metastability. The presented phase diagram provides a solid basis for understanding the assembly of polypeptide chains into the phases formed in their natively folded and unfolded conformations.  相似文献   
1000.
Understanding plasmonic enhancement of nanoscale magnetic materials is important to evaluate their potential for application. In this study, the Faraday rotation (FR) enhancement of gold coated Fe(2)O(3) nanoparticles (NP) is investigated experimentally and theoretically. The experiment shows that the Faraday rotation of a Fe(2)O(3) NP solution changes from approximately 3 rad/Tm to 10 rad/Tm as 5 nm gold shell is coated on a 9.7 nm Fe(2)O(3) core at 632 nm. The results also show how the volume fraction normalized Faraday rotation varies with the gold shell thickness. From the comparison of experiment and calculated Faraday rotation based on the Maxwell-Garnett theory, it is concluded that the enhancement and shell dependence of Faraday rotation of Fe(2)O(3) NPs is a result of the shifting plasmon resonance of the composite NP. In addition, the clustering of the NPs induces a different phase lag on the Faraday signal, which suggests that the collective response of the magnetic NP aggregates needs to be considered even in solution. From the Faraday phase lag, the estimated time of the full alignment of the magnetic spins of bare (cluster size 160 nm) and gold coated NPs (cluster size 90 nm) are found to be 0.65 and 0.17 μs. The calculation includes a simple theoretical approach based on the Bruggeman theory to account for the aggregation and its effect on the Faraday rotation. The Bruggeman model provides a qualitatively better agreement with the experimentally observed Faraday rotation and points out the importance of making a connection between component properties and the average "effective" optical behavior of the Faraday medium containing magnetic nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号