首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   3篇
  国内免费   1篇
化学   90篇
晶体学   1篇
力学   17篇
数学   43篇
物理学   23篇
  2023年   2篇
  2022年   9篇
  2021年   4篇
  2020年   7篇
  2019年   13篇
  2018年   3篇
  2017年   4篇
  2016年   9篇
  2014年   5篇
  2013年   9篇
  2012年   11篇
  2011年   10篇
  2010年   5篇
  2009年   6篇
  2008年   12篇
  2007年   11篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1991年   2篇
  1985年   2篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
51.
A robust and reliable gas sensing device is considered as a convenient and practical solution for gas concentration monitoring that has become a mandatory requirement in different field of applications. For in situ hazardous gases detection, a mixed-potential type gas sensor has been regarded as a promising solid-state gas sensor. For the past three decades, there has been a significant progress in achieving high performance in mixed-potential type sensors. Therefore, this review is focused on reporting the development of mixed-potential type gas sensors with combined yttria-stabilized zirconia (YSZ) as the base solid electrolyte material and various classes of electrode materials for their potential utilization as a high-performance sensing electrode. The underlying sensing mechanism of a mixed-potential type YSZ-based sensor is elaborated here in detail. Transformation in design and configuration of this type of sensor is also covered in this report. In addition, recent progresses on mixed-potential type gas sensors development for detection of several target gases, such as carbon monoxide, hydrocarbons, nitrogen oxides, hydrogen, and ammonia, are reviewed. Strategies to improve the sensing characteristic, particularly gas sensitivity and selectivity, are also reported. Based on the understanding of the fundamental sensing mechanism and the requirements for high-performance gas sensors, challenges and future trends for this type of gas sensor development are discussed.  相似文献   
52.
The purpose of the research was to study the purification and partial characterization of antifungal alkaline chitinase from a newly isolated Citrobacter freundii haritD11. The enzyme was purified in a three-step procedure involving ammonium sulfate precipitation, dialysis, and Sephadex G-100 gel filtration chromatography. The enzyme was shown to have a relative high molecular weight of 64 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and was purified 7.3-fold with a yield of 18.8 %. It was most active at 35 °C, pH 8.0, with colloid chitin as substrate and was very stable at alkaline pH contradicting the characteristic that most of the bacterial chitinases are active at acidic pH. Further, the purified chitinase exhibited remarkable antifungal activity against pathogenic fungi Aspergillus flavus MTCC 2798 and Aspergillus niger MTCC 9652 showing diametric inhibition zones of 27 mm and 21 mm, respectively.  相似文献   
53.
The Angiotensin-I-converting enzyme (ACE) is a peptidase with a significant role in the regulation of blood pressure. Within this work, a systematic review on the enzymatic preparation of Angiotensin-I-Converting Enzyme inhibitory (ACEi) peptides is presented. The systematic review is conducted by following PRISMA guidelines. Soybeans and velvet beans are known to have high protein contents that make them suitable as sources of parent proteins for the production of ACEi peptides. Endopeptidase is commonly used in the preparation of soybean-based ACEi peptides, whereas for velvet bean, a combination of both endo- and exopeptidase is frequently used. Soybean glycinin is the preferred substrate for the preparation of ACEi peptides. It contains proline as one of its major amino acids, which exhibits a potent significance in inhibiting ACE. The best enzymatic treatments for producing ACEi peptides from soybean are as follows: proteolytic activity by Protease P (Amano-P from Aspergillus sp.), a temperature of 37 °C, a reaction time of 18 h, pH 8.2, and an E/S ratio of 2%. On the other hand, the best enzymatic conditions for producing peptide hydrolysates with high ACEi activity are through sequential hydrolytic activity by the combination of pepsin-pancreatic, an E/S ratio for each enzyme is 10%, the temperature and reaction time for each proteolysis are 37 °C and 0.74 h, respectively, pH for pepsin is 2.0, whereas for pancreatin it is 7.0. As an underutilized pulse, the studies on the enzymatic hydrolysis of velvet bean proteins in producing ACEi peptides are limited. Conclusively, the activity of soybean-based ACEi peptides is found to depend on their molecular sizes, the amino acid residues, and positions. Hydrophobic amino acids with nonpolar side chains, positively charged, branched, and cyclic or aromatic residues are generally preferred for ACEi peptides.  相似文献   
54.
Viruses are the current big enemy of the world’s healthcare systems. As the small infector causes various deadly diseases, from influenza and HIV to COVID-19, the virus continues to evolve from one type to its mutants. Therefore, the development of antivirals demands tremendous attention and resources for drug researchers around the world. Active pharmaceutical ingredients (API) development includes discovering new drug compounds and developing existing ones. However, to innovate a new antiviral takes a very long time to test its safety and effectiveness, from structure modeling to synthesis, and then requires various stages of clinical trials. Meanwhile, developing the existing API can be more efficient because it reduces many development stages. One approach in this effort is to modify the solid structures to improve their physicochemical properties and enhance their activity. This review discusses antiviral multicomponent systems under the research phase and has been marketed. The discussion includes the types of antivirals, their counterpart compound, screening, manufacturing methods, multicomponent systems yielded, characterization methods, physicochemical properties, and their effects on their pharmacological activities. It is hoped that the opportunities and challenges of solid antiviral drug modifications can be drawn in this review as important information for further antiviral development.  相似文献   
55.
In this paper we investigate the non-linear dynamics of a two-degree-of-freedom system with symmetries subject to random parametric excitation. The study of this non-linear near-Hamiltonian system is simplified by using the symmetry and separation of scales present in the problem. To this end, we study the equations as a random perturbation of a four-dimensional weakly dissipative Hamiltonian system. We achieve the model-reduction through stochastic averaging and the reduced process is simply a Markov process on a line. Examination of the reduced Markov process on the line yields many important results, namely, probability density functions, and stochastic bifurcations. The steady state dynamics is computed explicitly. Phenomenological and dynamical bifurcations are investigated. The approach adopted in this paper can in principle, be applied to any four-dimensional integrable system.  相似文献   
56.
In order to understand the distribution and the cycle of arsenic compounds in the marine environment, the horizontal distributions of arsenic(V) [As(V)], arsenic(III) [As(III)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in the Indian Pacific Oceanic surface waters have been investigated. This took place during cruises of the boat Shirase from Tokyo to the Syowa Station (15 November–19 December 1990), of the tanker Japan Violet from Sakai to Fujayrah (28 July–17 August 1991) and of the boat Hakuho-maru from Tokyo to Auckland (19 September–27 October 1992). Vertical distributions of arsenic in the west Pacific Ocean have also been investigated. The concentration of As(V) was found to be relatively higher in the Antarctic than in the other areas. Its concentration varied from 340 ng dm?3 (China Sea) to 1045 ng dm?3 (Antarctic). On the other hand, the concentrations of the biologically produced species, MMAA and DMAA, were extremely low in the Antarctic and southwest Pacific waters. Their concentrations in Antarctic waters were 8 ng dm?3 and 22 ng dm?3 and those in the southwest Pacific were 12 ng dm?3 and 25 ng dm?3. In the other regions the concentration varied from 16 ng dm?3 (China Sea) to 36 ng dm?3 (north Indian Ocean) for MMAA and from 50 ng dm?3 (east Indian Ocean) to 172 ng dm?3 (north Indian Ocean) for DMAA. As a result, with the exception of Antarctic and southwest Pacific waters, the percentages of each arsenic species in the surface waters were very similar and varied from 52% (east Indian Ocean) to 63% (northwest Pacific Ocean) for As(V), from 22% (northwest Pacific Ocean) to 27% (east Indian Ocean) for As(III) and from 15% (northwest Pacific Ocean) to 21% (north and east Indian Oceans) for the methylated arsenics (MMAA+DMAA). These percentages in Antarctic waters were 97%, 0.2% and 2.8%, respectively, and those in the southwest Pacific Ocean were 97% for As(V)+As(III) and 3% for MMAA+DMAA. The very low concentrations of the biologically produced species in Antarctic waters and that of methylated arsenic in southwest Pacific waters indicated that the microorganism communities in these oceans was dominated by microorganisms having a low affinity towards arsenic. Furthermore, microorganism activity in the Antarctic was also limited due to the much lower temperature of the seawater there. The vertical profile of inorganic arsenic was 1350 ng dm?3 in surface waters, 1500 ng dm?3 in bottom waters with a maximum value of 1700 ng dm?3 at a depth of about 2000 m in west Pacific waters. This fact suggested the uptake of arsenic by microorganisms in the surface waters and the co-precipitation of arsenic with hydrated heavy-metal oxides in bottom waters. The suggested uptake of inorganic arsenic and subsequent methylation was also supported by the profile of DMAA, with a high concentration of about 26 ng dm?3 in surface water and a significant decrease to a value of 9 ng dm?3 at a depth of 1000 m.  相似文献   
57.
J Segar  M S Sri Ram 《Pramana》1993,40(4):291-297
We consider aSU(3) quark soliton model based on chiral invariant quark-meson coupling. We find soliton solutions with nonzero strangeness andB=1 in the model with nontrivial kaonic fields, for values of the coupling constant greater than the phenomenologically acceptable number. Hence they do not correspond to known strange baryons.  相似文献   
58.
59.
The fragmentation reactions of isomeric dipeptides containing α- and β-alanine residues (αAla-αAla, αAla-βAla, βAla-αAla, and βAla-βAla) were studied using a combination of low-energy and energy resolved collision induced dissociation (CID). Each dipeptide gave a series of different fragment ions, allowing for differentiation. For example, peptides containing an N-terminal β-Ala residue yield a diagnostic imine loss, while lactam ions at m/z 72 are unique to peptides containing β-Ala residues. In addition, MS3 experiments were performed. Structure-specific fragmentation reactions were observed for y1 ions, which help identify the C-terminal residue. The MS3 spectra of the b2 ions are different suggesting they are unique for each peptide. Density functional theory (DFT) calculations predict that b2 ions formed via a neighboring group attack by the amide are thermodynamically favored over those formed via neighboring group attack by the N-terminal amine. Finally, to gain further insight into the unique fragmentation chemistry of the peptides containing an N-terminal β-alanine residue, the fragmentation reactions of protonated β-Ala-NHMe were examined using a combination of experiment and DFT calculations. The relative transition-state energies involved in the four competing losses (NH3, H2O, CH3NH2, and CH2=NH) closely follow the relative abundances of these as determined via CID experiments.  相似文献   
60.
We present an array of force spectroscopy experiments that aim to identify the role of solvent hydrogen bonds in protein folding and chemical reactions at the single‐molecule level. In our experiments we control the strength of hydrogen bonds in the solvent environment by substituting water (H2O) with deuterium oxide (D2O). Using a combination of force protocols, we demonstrate that protein unfolding, protein collapse, protein folding and a chemical reaction are affected in different ways by substituting H2O with D2O. We find that D2O molecules form an integral part of the unfolding transition structure of the immunoglobulin module of human cardiac titin, I27. Strikingly, we find that D2O is a worse solvent than H2O for the protein I27, in direct contrast with the behaviour of simple hydrocarbons. We measure the effect of substituting H2O with D2O on the force dependent rate of reduction of a disulphide bond engineered within a single protein. Altogether, these experiments provide new information on the nature of the underlying interactions in protein folding and chemical reactions and demonstrate the power of single‐molecule techniques to identify the changes induced by a small change in hydrogen bond strength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号