首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   21篇
  国内免费   1篇
化学   193篇
力学   6篇
数学   27篇
物理学   53篇
  2024年   2篇
  2023年   14篇
  2022年   15篇
  2021年   18篇
  2020年   15篇
  2019年   17篇
  2018年   11篇
  2017年   9篇
  2016年   14篇
  2015年   11篇
  2014年   12篇
  2013年   18篇
  2012年   22篇
  2011年   14篇
  2010年   16篇
  2009年   7篇
  2008年   10篇
  2007年   17篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有279条查询结果,搜索用时 0 毫秒
271.
2, 6, 12, and 20 electron quantum dots have been studied using coupled cluster at singles and doubles level and extensive multireference coupled cluster (MRCC) method. A Fock-space version of MRCC (FSMRCC) containing single hole-particle excited determinants has been used to calculate low-lying excited states of the above system. The ionization potential and electron affinity are also calculated. The effect of correlation energy on excitation energy and charge density is shown by calculating them at the high density region (low value of density parameter rs) and at the low density region (high value of density parameter rs).  相似文献   
272.
Cu–Ni fcc alloy nanoparticles (NPs) of tunable atomic ratios were generated in SiO2 films. The films were prepared using the Cu(NO3)2 and Ni(NO3)2 co-doped inorganic–organic hybrid silica sols by single dipping. Transparent, crack-free, glassy SiO2 films of 310 ± 10 nm in thickness embedded with high mol percent of Cu–Ni alloy NPs were yielded after annealing at 750 °C in 10% H2-90% Ar atmosphere. Nominal compositions of the films were 20 mol% (Cu–Ni)-80 mol% SiO2. Optical spectral study of the heat-treated films showed disappearance of Cu plasmon bands due to Cu–Ni alloy formation. Grazing incidence X-ray diffraction (GIXRD) studies revealed the formation of Cu–Ni alloy (2:1, 1:1 and 1:2) NPs inside the SiO2 film. GIXRD showed a systematic shifting of the diffraction peaks with respect to the fcc Cu–Ni alloy composition, maintaining the nominal ratios. Transmission electron microscopy (TEM) studies of the representative Cu0.5Ni0.5-doped film showed existence of homogeneously dispersed Cu–Ni alloy NPs of average size 6.35 nm inside the SiO2 matrix. The energy dispersive X-ray scattering (EDX) analysis of the individual NPs using the nano-probe (scanning TEM mode) confirmed the presence of both the Cu and Ni with the desired atomic ratio.  相似文献   
273.

Abstract  

Highly water dispersible rhodium–graphene nanocomposite have been successfully synthesized by the simple reduction of Rh3+ salt on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO/PPO/PEO) triblock copolymer or pluronic-stabilized graphene oxide (GO) nanosheets with borohydride. Rhodium nanoparticles, having average size of 1–3 nm, are homogeneously distributed through out the graphene sheets. Some porous structures of graphene sheets have also been observed after the reduction of pluronic-stabilized GO in the presence of metal ions. The material is very effective for hydrogenation of arenes, especially for benzene as the substrate material at the room temperature and 5 atm pressure of hydrogen.  相似文献   
274.
A novel route has been developed to fabricate different carbon nanostructures having individual morphology of carbon nanoparticles: nanofullerene, nanocube, nanoleaf and porous nanorods, through the combustion of carbon xerogel with nitric acid. These fabricated nanostructures exhibited bright green fluorescence under the exposure of UV light.  相似文献   
275.
Mixed cation (Li+, Na+ and K+) and anion (F?, Cl?, Br?) complexes of the aromatic π‐surfaces (top and bottom) are studied by using dispersion‐corrected density functional theory. The selectivity of the aromatic surface to interact with a cation or an anion can be tuned and even reversed by the electron‐donating/electron‐accepting nature of the side groups. The presence of a methyl group in the ? OCH3, ? SCH3, ? OC2H5 in the side groups of the aromatic ring leads to further cooperative stabilization of the otherwise unstable/weakly stable anion???π complexes by bending of the side groups towards the anion to facilitate C? H???anion interactions. The cooperativity among the interactions is found to be as large as 100 kcal mol?1 quantified by dissection of the three individual forces from the total interaction energy. The crystal structures of the fluoride binding tripodal and hexapodal ligands provide experimental evidence for such cooperative interactions.  相似文献   
276.
Two-dimensional graphitic metal–organic frameworks (GMOF) often display impressive electrical conductivity chiefly due to efficient through-bond in-plane charge transport, however, less efficient out-of-plane conduction across the stacked layers creates large disparity between two orthogonal conduction pathways and dampens their bulk conductivity. To address this issue and engineer higher bulk conductivity in 2D GMOFs, we have constructed via an elegant bottom-up method the first π-intercalated GMOF (iGMOF1) featuring built-in alternate π-donor/acceptor (π-D/A) stacks of CuII-coordinated electron-rich hexaaminotriphenylene (HATP) ligands and non-coordinatively intercalated π-acidic hexacyano-triphenylene (HCTP) molecules, which facilitated out-of-plane charge transport while the hexagonal Cu3(HATP)2 scaffold maintained in-plane conduction. As a result, iGMOF1 attained an order of magnitude higher bulk electrical conductivity and much smaller activation energy than Cu3(HATP)2 (σ=25 vs. 2 S m−1, Ea=36 vs. 65 meV), demostrating that simultaneous in-plane (through-bond) and out-of-plane (through πD/A stacks) charge transport can generate higher electrical conductivity in novel iGMOFs.  相似文献   
277.
In this research, highly efficient heterogeneous bifunctional (BF) electrocatalysts (ECs) have been strategically designed by Fe coordination (CR) complexes, [Fe2L2(H2O)2Cl2] (C1) and [Fe2L2(H2O)2(SO4)].2(CH4O) (C2) where the high seven CR number synergistically modifies the electronic environment of the Fe centre for facilitation of H2O electrolysis. The electronic status of Fe and its adjacent atomic sites have been further modified by the replacement of −Cl in C1 by −SO42− in C2 . Interestingly, compared to C1 , the O−S−O bridged C2 reveals superior BF activity with extremely low overpotential (η) at 10 mA cm−2 (140 mVOER, 62 mVHER) and small Tafel slope (120.9 mV dec−1OER, 45.8 mV dec−1HER). Additionally, C2 also facilitates a high-performance alkaline H2O electrolyzer with cell voltage of 1.54 V at 10 mA cm−2 and exhibits remarkable long-term stability. Thus, exploration of the intrinsic properties of metal–organic framework (MOF)-based ECs opens up a new approach to the rational design of a wide range of molecular catalysts.  相似文献   
278.
Multichromophoric dye-sensitized solar cells (DSCs) based on self-assembled zinc-porphyrinperyleneimide dyads on TiO(2) films display more efficient light-to-electrical energy conversion than DSCs based on individual dyes. Higher efficiency of multichromophoric dyes can be attributed to co-sensitization as well as vectorial electron transfer that lead to better electron-hole separation in the device.  相似文献   
279.
One step solvothermal route has been developed to prepare a well dispersed magnetically separable palladium–graphene nanocomposite, which can act as a unique catalyst against hydrogenation due to the uniform decoration of palladium nanoparticles throughout the surface of the magnetite–graphene nanocomposite and hence can be reused for several times. In addition to catalytic activity, palladium nanoparticles also facilitate the formation and homogeneous distribution of magnetite (Fe3O4) nanoparticles onto the graphene surfaces or else an agglomerated product has been obtained after the solvothermal reduction of graphene oxide in presence of Fe3+ alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号