首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   835篇
  免费   23篇
  国内免费   2篇
化学   389篇
晶体学   25篇
力学   29篇
数学   96篇
物理学   321篇
  2023年   5篇
  2022年   4篇
  2021年   4篇
  2020年   19篇
  2019年   17篇
  2018年   10篇
  2017年   15篇
  2016年   25篇
  2015年   14篇
  2014年   28篇
  2013年   42篇
  2012年   62篇
  2011年   62篇
  2010年   44篇
  2009年   29篇
  2008年   33篇
  2007年   33篇
  2006年   28篇
  2005年   33篇
  2004年   40篇
  2003年   35篇
  2002年   20篇
  2001年   12篇
  2000年   13篇
  1999年   14篇
  1998年   7篇
  1997年   7篇
  1996年   12篇
  1995年   15篇
  1994年   15篇
  1993年   14篇
  1992年   6篇
  1991年   12篇
  1990年   5篇
  1989年   7篇
  1988年   11篇
  1987年   5篇
  1986年   8篇
  1985年   8篇
  1984年   10篇
  1983年   3篇
  1982年   7篇
  1981年   7篇
  1980年   9篇
  1979年   8篇
  1978年   11篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1973年   4篇
排序方式: 共有860条查询结果,搜索用时 31 毫秒
121.
Arithmetic and algebraic operations are the most important part of optical computation and data processing. To implement the optical logic operations, different data encoding/decoding techniques have been reported. Frequency variant encoding/decoding technique is now performing a very faithful role in this regard. Frequency is the fundamental character of any signal and it remains unaltered in reflection, refraction, absorption, etc. during propagation and transmission of the signal. This is the most potential advantage of the frequency encoding technique over any other conventional encoding techniques. Here, in our proposed scheme of addition of binary bits made of two encoded frequencies in C-band (1535-1560 nm), the conjugate beam is generated in LiNbO3 waveguide using cascaded sum and difference frequency generation by the nonlinear interaction with a third frequency, exploiting the nonlinear response character of periodically poled LiNbO3 waveguide. The cross-gain modulation property of reflecting semiconductor optical amplifier (RSOA) has also been exploited here for frequency conversion purposes.  相似文献   
122.
A boundary layer analysis is presented for non-Newtonian fluid flow and heat transfer over a nonlinearly stretching surface. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. By using suitable transformations, the governing partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained with the shooting method. The effect of increasing Casson parameter is to suppress the velocity field. However the temperature is enhanced with the increasing Casson parameter.  相似文献   
123.
Advances in NMR instrumentation and pulse sequence design have resulted in easier acquisition of Residual Dipolar Coupling (RDC) data. However, computational and theoretical analysis of this type of data has continued to challenge the international community of investigators because of their complexity and rich information content. Contemporary use of RDC data has required a-priori assignment, which significantly increases the overall cost of structural analysis. This article introduces a novel algorithm that utilizes unassigned RDC data acquired from multiple alignment media (nD-RDC, n  3) for simultaneous extraction of the relative order tensor matrices and reconstruction of the interacting vectors in space.Estimation of the relative order tensors and reconstruction of the interacting vectors can be invaluable in a number of endeavors. An example application has been presented where the reconstructed vectors have been used to quantify the fitness of a template protein structure to the unknown protein structure. This work has other important direct applications such as verification of the novelty of an unknown protein and validation of the accuracy of an available protein structure model in drug design. More importantly, the presented work has the potential to bridge the gap between experimental and computational methods of structure determination.  相似文献   
124.
Microsecond to millisecond timescale backbone dynamics of the amyloid core residues in Y145Stop human prion protein (PrP) fibrils were investigated by using 15N rotating frame (R) relaxation dispersion solid-state nuclear magnetic resonance spectroscopy over a wide range of spin-lock fields. Numerical simulations enabled the experimental relaxation dispersion profiles for most of the fibril core residues to be modelled by using a two-state exchange process with a common exchange rate of 1000 s−1, corresponding to protein backbone motion on the timescale of 1 ms, and an excited-state population of 2 %. We also found that the relaxation dispersion profiles for several amino acids positioned near the edges of the most structured regions of the amyloid core were better modelled by assuming somewhat higher excited-state populations (∼5–15 %) and faster exchange rate constants, corresponding to protein backbone motions on the timescale of ∼100–300 μs. The slow backbone dynamics of the core residues were evaluated in the context of the structural model of human Y145Stop PrP amyloid.  相似文献   
125.
Changes to the structure of polystyrene melt films as measured through the spectrum of density fluctuations have been observed as a function of film thickness down to the polymer radius of gyration (Rg). Films thicker than 4Rg show bulklike density fluctuations. Thinner films exhibit a peak in S(q) near q=0 which grows with decreasing thickness. This peak is attributed to a decreased interpenetration of chains resulting in an enhanced compressibility. Measurements were made using small angle x-ray scattering in a standing wave geometry designed to enhance scattering from the interior of the film compared to interface scattering.  相似文献   
126.
We report here the quasielastic neutron scattering (QENS) studies on the dynamics of propylene inside Na-Y zeolite using triple axis spectrometer (TAS) at Dhruva reactor, Trombay. Molecular dynamics (MD) simulations performed on the system had shown that the rotational motion involves energy larger than that involved in the translational motion. Therefore, rotational motion was not observed in our earlier QENS studies on propylene adsorbed Na-Y zeolite using a higher resolution spectrometer at Dhruva. Analysis of the TAS spectra revealed that the quasielastic broadening observed in propylene-loaded zeolite spectra is due to the rotational motion of the propylene molecules. This is consistent with our simulation result. Further, the rotational motion is found to be isotropic. The rotational diffusion coefficient has been obtained.   相似文献   
127.
Organic spin-based molecular materials are considered to be attractive for the generation of functional materials with emergent optoelectronic, magnetic, or magneto-conductive properties. However, the major limitations to the utilization of organic spin-based systems are their high reactivity, instability, and propensity for dimerization. Herein, we report the synthesis, characterization, and magnetic and electronic studies of three ambient stable radical ions ( 1 a.+ , 1 b.+ , and 1 c.+ ). The radical ions 1 b.+ and 1 c.+ with BPh4 and BF4 counter anions, respectively, were synthesized in excellent yields by means of anion metathesis of 1 a.+ with Br as its counter anion. Notably, synthesis of 1 a.+ was achieved in an ecofriendly, solvent-free protocol. The radical ions were characterized by means of single-crystal X-ray diffraction studies, which revealed the discrete nature of the radical ions and extensive hydrogen-bonding interactions within the radical ions and with the counter anions. Thus, radical ions can be organized to form infinite supramolecular arrays using weak noncovalent interactions. In addition, the Br, BF4, and BPh4 anions formed diverse types of anion–π interactions with the naphthalene and imide rings of the radical ions. The radical ions were characterized by means of X-band electron paramagnetic resonance (EPR) spectroscopy in solution and in the solid state. Magnetic studies revealed their paramagnetic nature in the range of 10 to 300 K. The radical ions exhibited high resistivity approaching the gigaohm (GΩ) scale. In addition, the radical ions exhibited panchromism.  相似文献   
128.
ABSTRACT

The yield drop phenomenon observed in the Ti–15V-3Al–3Sn-3Cr (Ti–15–3) beta-titanium alloy and its anomalous behaviour in the boron and carbon added Ti–15–3 alloys have been studied. While the base and the carbon containing alloys exhibit yield drop, the boron containing alloy with smaller grain size than base alloy does not appear to show this phenomenon. Tensile tests were interrupted at different stress levels followed by analyses of slip lines and sub-structural characteristics using scanning and transmission electron microscopes to understand this anomalous yield point phenomenon. Infrared thermal imaging technique was used to map the strain localisation and the spatiotemporal evolution of deformation along the gauge length of the specimens during the tensile tests. Deformation in these alloys initiates only in a few grains. Pile-up of dislocations in these grains subsequently triggers the formation of dislocations in other grains and their rapid multiplications. The spreading of deformation by the generation of dislocations from pile up dislocations in one grain to neighbouring un-deformed grains and their rapid multiplication to new regions influence the yield drop phenomenon and its characteristics. It is shown in this study that microscopic instability in the grain level is a necessary, but not the sufficient condition for the manifestation of macroscopic instability during tensile deformation in polycrystalline materials. The presence of boride particles at grain boundaries restricts the slip transfer across the grains as well as the spreading of deformation to new regions, which causes the suppression of yield drop in the boron containing alloy.  相似文献   
129.
We report, for the first time, a detailed crystallographic study of the supramolecular arrangement for a set of zinc(II) Schiff base complexes containing the ligand 2,6-bis((E)-((2-(dimethylamino)ethyl)imino)methyl)-4-R-phenol], where R=methyl/tert-butyl/chloro. The supramolecular study acts as a pre-screening tool for selecting the compartmental ligand R of the Schiff base for effective binding with a targeted protein, bovine serum albumin (BSA). The most stable hexagonal arrangement of the complex [Zn − Me] (R=Me) stabilises the ligand with the highest FMO energy gap (ΔE=4.22 eV) and lowest number of conformations during binding with BSA. In contrast, formation of unstable 3D columnar vertebra for [Zn − Cl] (R=Cl) tend to activate the system with lowest FMO gap (3.75 eV) with highest spontaneity factor in molecular docking. Molecular docking analyses reported in terms of 2D LigPlot+ identified site A, a cleft of domains IB, IIIA and IIIB, as the most probable protein binding site of BSA. Arg144, Glu424, Ser428, Ile455 and Lys114 form the most probable interactions irrespective of the type of compartmental ligands R of the Schiff base whereas Arg185, Glu519, His145, Ile522 act as the differentiating residues with ΔG=−7.3 kcal mol−1.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号