首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21199篇
  免费   4056篇
  国内免费   3200篇
化学   15533篇
晶体学   302篇
力学   1333篇
综合类   303篇
数学   2601篇
物理学   8383篇
  2024年   37篇
  2023年   368篇
  2022年   522篇
  2021年   675篇
  2020年   884篇
  2019年   874篇
  2018年   740篇
  2017年   720篇
  2016年   983篇
  2015年   1052篇
  2014年   1295篇
  2013年   1595篇
  2012年   1956篇
  2011年   2082篇
  2010年   1493篇
  2009年   1508篇
  2008年   1606篇
  2007年   1397篇
  2006年   1315篇
  2005年   1097篇
  2004年   916篇
  2003年   694篇
  2002年   709篇
  2001年   602篇
  2000年   472篇
  1999年   434篇
  1998年   332篇
  1997年   342篇
  1996年   295篇
  1995年   243篇
  1994年   227篇
  1993年   167篇
  1992年   115篇
  1991年   132篇
  1990年   113篇
  1989年   78篇
  1988年   76篇
  1987年   65篇
  1986年   48篇
  1985年   36篇
  1984年   29篇
  1983年   28篇
  1982年   27篇
  1981年   18篇
  1980年   16篇
  1979年   6篇
  1976年   6篇
  1975年   8篇
  1959年   5篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 687 毫秒
991.
We developed a solid‐phase microextraction coupled to GC with electron‐capture detection method for the detection of acrylamide in food samples. Single‐walled carbon nanotubes and polypyrrole were electropolymerized onto a stainless‐steel wire as a coating, which possessed a homogeneous, porous, and wrinkled surface, chemical and mechanical stability, long lifespan (over 300 extractions), and good extraction efficiency for acrylamide. The linearity range between the signal intensity and the acrylamide concentration was found to be in the range 0.001–1 μg/mL, and the coefficient of determination was 0.9985. The LOD, defined as three times the baseline noise, was 0.26 ng/mL. The reproducibility for each single fiber (n = 6) and the fiber‐to‐fiber (n = 5) repeatability prepared in the same batch were less than 4.1 and 11.2%, respectively.  相似文献   
992.
Streptomycin‐imprinted silica microspheres were prepared by combining a surface molecular‐imprinting technique with the sol‐gel method. A mixture of tetrahydrofuran, ethanol, and water (6:1:1, v/v/v) was selected as dispersing solvent while 3‐aminopropyltriethoxysilane and triethoxyphenylsilane acted as functional monomers, and tetraethyl orthosilicate as a cross‐linker. Characterization of the molecularly imprinted polymers was conducted using scanning electron microscope and dynamic binding experiments. As compared to the nonimprinted polymers, the imprinted polymers exhibited a higher degree of saturated adsorption volume up to 26.3 mg/g, and better selectivity even in an aqueous solution with interfering compounds, including dihydrostreptomycin, neomycin, and tetracycline. The adsorption ability and selectivity were observed to be influenced by the mole ratio of 3‐aminopropyltriethoxysilane and triethoxyphenylsilane. Feasibility of the polymers to be used for actual application was also evaluated with spiked samples, indicating great potential for large‐scale applications. Moreover, the streptomycin‐imprinted polymers can be repeatedly used for 12 cycles without losing original performance, which is beneficial for commercial use.  相似文献   
993.
A novel carboxyl‐bonded silica stationary phase was prepared by “thiol‐ene” click chemistry. The resultant Thiol‐Click‐COOH phase was evaluated under hydrophilic interaction liquid chromatography (HILIC) mobile phase conditions. A comparison of the chromatographic performance of Thiol‐Click‐COOH and pure silica columns was performed according to the retention behaviors of analytes and the charged state of the stationary phases. The results indicated that the newly developed Thiol‐Click‐COOH column has a higher surface charge and stronger hydrophilicity than the pure silica column. Furthermore, the chromatographic behaviors of five nucleosides on the Thiol‐Click‐COOH phase were investigated in detail. Finally, a good separation of 13 nucleosides and bases, and four water‐soluble vitamins was achieved.  相似文献   
994.
A rapid and convenient method was established to preparatively isolate the three ellagic acid types of compounds, which were the main polyphenols in Euphorbia pekinensis, by flexibly applying solvent extraction combined with counter‐current chromatography (CCC). The total extract (extracted using 95% ethanol) of E. pekinensis was pretreated by two simple steps before CCC isolation, following the procedure: the total extract was extracted by classical solvent extraction using petroleum ether and ethyl acetate, respectively, and then the ethyl acetate extract was suspended using 95% ethanol, after being allowed to stand overnight, the sediment was obtained. Partial sediment (100 mg) was then directly separated by CCC with a two‐phase solvent system composed of chloroform‐95% ethanol‐water‐85% formic acid (50:50:50:5, v/v/v/v). About 22 mg of 3,3′‐dimethoxy ellagic acid (1), 12 mg of 3,3′‐di‐O‐methyl‐4‐O‐(β‐d ‐xylopyranosyl)ellagic acid (2), and 35 mg of ellagic acid (3) with purities of 96.0, 95.2, and 95.4% were obtained respectively in one step within 4 h. After being purified by washing with methanol, the purities of the three compounds obtained were all above 98%. The purities were determined by HPLC and their chemical structures were further identified by 1H and 13C NMR spectroscopy. The recoveries were calculated as 84.6, 85.7, and 89.5%, respectively. The result demonstrated that the present isolation method was rapid, economical and efficient for the preparative separation of polyphenols from E. pekinensis.  相似文献   
995.
A novel electrochemical method for the sequence-specific detection of double-stranded polymerase chain reaction (PCR) products of PML/RARα fusion gene in acute promyelocytic leukemia (APL) was described in detail. Based on a “sandwich” sensing mode involving a pair of locked nucleic acids probes (capture probe and reporter probe), this DNA sensor exhibited excellent selectivity and specificity. The direct and quantitative analysis of double-stranded complementary was firstly performed by our sensor without the use of alkali, helicase enzymes, or denaturants. Finally, combining PCR technique with electrochemical detection scheme, PCR amplicons (191 bp) of the PML/RARα fusion gene were obtained and rapidly identified with a low detection limit of 79 fmol in the 100-μL hybridization system. The results clearly showed the power of sensor as a promising tool for the sensitive, specific, and portable detection of APL and other diseases.  相似文献   
996.
Silanol groups on a silica surface affect the activity of immobilized catalysts because they can influence the hydrophilicity/hydrophobicity, matter transfer, or even transition state in a catalytic reaction. Previously, these silanol groups have usually been passivated by using surface‐passivation reagents, such as alkoxysilanes, bis‐silylamine reagents, chlorosilanes, etc., and surface passivation has typically been found in mesoporous‐silicas‐supported molecular catalysts and heteroatomic catalysts. However, this property has rarely been reported in mesoporous‐silicas‐supported metal‐nanoparticle catalysts. Herein, we prepared an almost‐superhydrophobic SBA‐15‐supported gold‐nanoparticle catalyst by using surface passivation, in which the catalytic activity increased more than 14 times for the reduction of nitrobenzene compared with non‐passivated SBA‐15. In addition, this catalyst can selectively catalyze hydrophobic molecules under our experimental conditions, owing to its high (almost superhydrophobic) hydrophobic properties.  相似文献   
997.
An electrically neutral cobalt complex, [Co(GA)2(phen)] (GA=glycollic acid, phen=1,10‐phenathroline), was synthesized and its interactions with double‐stranded DNA (dsDNA) were studied by using electrochemical methods on a glassy carbon electrode (GCE). We found that [Co(GA)2(phen)] could intercalate into the DNA duplex through the planar phen ligand with a high binding constant of 6.2(±0.2)×105 M ?1. Surface studies showed that the cobalt complex could electrochemically accumulate within the modified dsDNA layer, rather than within the single‐stranded DNA (ssDNA) layer. Based on this feature, the complex was applied as a redox‐active hybridization indicator to detect 18‐base oligonucleotides from the CaMV35S promoter gene. This biosensor presented a very low background signal during hybridization detection and could realize the detection over a wide kinetic range from 1.0×10?14 M to 1.0×10?8 M , with a low detection limit of 2.0 fM towards the target sequences. The hybridization selectivity experiments further revealed that the complementary sequence, the one‐base‐mismatched sequence, and the non‐complementary sequence could be well‐distinguished by the cobalt‐complex‐based biosensor.  相似文献   
998.
By taking advantage of UV‐Raman spectroscopy and high‐resolution TEM (HRTEM), combined with the focused ion beam (FIB) technique, the transformation from GaOOH into α‐Ga2O3 and then into β‐Ga2O3 was followed. We found that the stepwise transformations took place from the surface region before developing into the bulk of single particles without particle agglomeration and growth. During the transformation from GaOOH into α‐Ga2O3, the elimination of water vapor through the dehydroxylation of GaOOH resulted in the formation of micropores in the single particles, whilst maintaining their particle size. For the phase transformation from α‐Ga2O3 into β‐Ga2O3, the nucleation of β‐Ga2O3 was found to occur at the surface defects and this process could be retarded by occupying these defects with a small amount of La2O3. By finely controlling the process of the phase transformation, the β‐Ga2O3 domains gradually developed from the surface into the bulk of the single particles without particle agglomeration. Therefore, the surface structure of the α‐Ga2O3 single particles can be easily tuned and a particle with an α@β core–shell phase structure has been obtained.  相似文献   
999.
The reactions of E powder (E=S, Se) with a mixture of Cr(CO)6 and Mn2(CO)10 in concentrated solutions of KOH/MeOH produced two new mixed Cr? Mn? carbonyl clusters, [E2CrMn2(CO)9]2? (E=S, 1 ; Se, 2 ). Clusters 1 and 2 were isostructural with one another and each displayed a trigonal‐bipyramidal structure, with the CrMn2 triangle axially capped by two μ3‐E atoms. The analogous telluride cluster, [Te2CrMn2(CO)9]2? ( 3 ), was obtained from the ring‐closure of Te2Mn2 ring complex [Te2Mn2Cr2(CO)18]2? ( 4 ). Upon bubbling with CO, clusters 2 and 3 were readily converted into square‐pyramidal clusters, [E2CrMn2(CO)10]2? (E=Se, 5 ; Te, 6 ), accompanied with the cleavage of one Cr? Mn bond. According to SQUID analysis, cluster 6 was paramagnetic, with S=1 at room temperature; however, the Se analogue ( 5 ) was spectroscopically proposed to be diamagnetic, as verified by TD‐DFT calculations. Cluster 6 could be further carbonylated, with cleavage of the Mn? Mn bond to produce a new arachno‐cluster, [Te2CrMn2(CO)11]2? ( 7 ). The formation and structural isomers, as well as electrochemistry and UV/Vis absorption, of these clusters were also elucidated by DFT calculations.  相似文献   
1000.
A high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization tandem mass spectrometry (HPLC-PAD–ESI-MS) method has been developed for the simultaneous identification and quantification of active compounds (rutin and quercetin) contained in Traditional Chinese Medicine (TCM) Euonymus alatus (Thunb.) Siebold (EAS). The herb samples from ten main origins and five medicinal portions (leaf, fruit, stem, pterygium and root) were investigated. The separation was performed on a Shim C18 column at 30 °C with an isocratic elution. Methanol (A) and water (0.5% methanoic acid, v/v) (B) were used as mobile phases. The recoveries of the two compounds were 100.184% and 100.417%, respectively, and all of them showed good linearity (r2 ? 0.9993) in relatively wide concentration ranges. The developed method was applied to identify and quantify the two major active compounds in the collected herb samples, and the results indicated that contents of the two compounds in EAS varied significantly from habitat to habitat. It was demonstrated that the proposed method was helpful for the quality evaluation of EAS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号