首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2869篇
  免费   46篇
  国内免费   11篇
化学   1731篇
晶体学   59篇
力学   96篇
数学   272篇
物理学   768篇
  2023年   18篇
  2022年   28篇
  2020年   23篇
  2019年   38篇
  2018年   27篇
  2017年   30篇
  2016年   65篇
  2015年   42篇
  2014年   66篇
  2013年   158篇
  2012年   131篇
  2011年   219篇
  2010年   143篇
  2009年   133篇
  2008年   157篇
  2007年   204篇
  2006年   154篇
  2005年   125篇
  2004年   101篇
  2003年   102篇
  2002年   68篇
  2001年   31篇
  2000年   35篇
  1999年   38篇
  1998年   29篇
  1997年   29篇
  1996年   29篇
  1995年   28篇
  1994年   23篇
  1993年   24篇
  1992年   28篇
  1991年   22篇
  1990年   31篇
  1989年   19篇
  1987年   28篇
  1986年   29篇
  1985年   30篇
  1984年   25篇
  1983年   19篇
  1982年   31篇
  1981年   36篇
  1980年   22篇
  1979年   33篇
  1978年   27篇
  1976年   22篇
  1975年   21篇
  1974年   19篇
  1973年   20篇
  1972年   18篇
  1971年   16篇
排序方式: 共有2926条查询结果,搜索用时 15 毫秒
61.
The mineral xocomecatlite is a hydroxy metatellurate mineral with Te6+ O4 units. Tellurates may be subdivided according to their formula into three types of tellurate minerals: type (a) (AB)m (TeO4)pZq, type (b) (AB)m(TeO6)·xH2O and (c) compound tellurates in which a second anion including the tellurite anion, is involved. The mineral xocomecatlite is an example of the first type. Raman bands for xocomecatlite at 710, 763 and 796 cm−1, and 600 and 680 cm−1 are attributed to the ν1(TeO4)2− symmetric and ν3 antisymmetric stretching mode. Raman bands observed at 2867 and 2926 cm−1 are assigned to TeOH stretching vibrations and enable estimation of the hydrogen bond distances of 2.622 Å (2867 cm−1), 2.634 Å (2926 cm−1) involving these OH units. The hydrogen bond distances are very short implying that they are necessary for the stability of the mineral. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
62.
Hydrotalcites of formula Mg6(Al,Fe)2(OH)16(CO3)·4H2O formed by intercalation with the carbonate anion as a function of divalent/trivalent cationic ratio have been successfully synthesised. The XRD patterns show variation in the d‐spacing attributed to the size of the cation. Raman and infrared bands in the OH stretching region are assigned to (1) brucite layer OH stretching vibrations, (2) water stretching bands and (3) water strongly hydrogen bonded to the carbonate anion. Multiple (CO3)2− symmetric stretching bands suggest that different types of (CO3)2− exist in the hydrotalcite interlayer. Increasing the cation ratio (Mg/Al,Fe) resulted in an increase in the combined intensity of the two Raman bands at around 3600 cm−1, attributed to Mg OH stretching modes, and a shift of the overall band profile to higher wavenumbers. These observations are believed to be a result of the increase in magnesium in the structure. Raman spectroscopy shows a reduction in the symmetry of the carbonate, leading to the conclusion that the anions are bonded to the brucite‐like hydroxyl surface and to the water in the interlayer. Water bending modes are identified in the infrared spectra at positions greater than 1630 cm−1, indicating that water is strongly hydrogen bonded to both interlayer anions and the brucite‐like surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
63.
Nanomaterials based upon silylated layered double hydroxides   总被引:1,自引:0,他引:1  
A class of nanomaterials based upon the surface modification of layered double hydroxides (LDHs) have been synthesized by grafting silanes onto the surfaces of the LDH. By in situ coprecipitation, the surfaces of a LDH have been modified through grafting of 3-aminopropyltriethoxysilane (APTS) using the anionic surfactant Na-dodecylsulfonate (SDS). The synthesized nanomaterials were characterized by X-ray diffraction (XRD), attenuated total reflection Fourier-transform infrared spectroscopy (ATR FTIR), thermogravimetry (TG) and transmission electron microscopy (TEM). The grafted LDH (LDH-G) displays distinct XRD patterns proving the obtained materials are a new and different phase. The FTIR spectra of the silylated hydrotalcite show bands attributed to Si-O-M (M = Mg and Al) vibration at 996 cm−1, suggesting that APTS has successfully been grafted onto the LDH layers. The TG curves prove the grafted sample has less M-OH concentration and less interlayer water molecules, as indicated by the M-OH consumption during the condensation reaction between Si-OH and M-OH on the LDH surface. The grafted sample displays a ribbon-like thin sheet in the TEM images, with the lateral thickness estimated as 2.5 nm.  相似文献   
64.
Numerical approximation of the five-equation two-phase flow of Kapila et al. [A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002–3024] is examined. This model has shown excellent capabilities for the numerical resolution of interfaces separating compressible fluids as well as wave propagation in compressible mixtures [A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics 202(2) (2005) 664–698; R. Abgrall, V. Perrier, Asymptotic expansion of a multiscale numerical scheme for compressible multiphase flows, SIAM Journal of Multiscale and Modeling and Simulation (5) (2006) 84–115; F. Petitpas, E. Franquet, R. Saurel, O. Le Metayer, A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks, Journal of Computational Physics 225(2) (2007) 2214–2248]. However, its numerical approximation poses some serious difficulties. Among them, the non-monotonic behavior of the sound speed causes inaccuracies in wave’s transmission across interfaces. Moreover, volume fraction variation across acoustic waves results in difficulties for the Riemann problem resolution, and in particular for the derivation of approximate solvers. Volume fraction positivity in the presence of shocks or strong expansion waves is another issue resulting in lack of robustness. To circumvent these difficulties, the pressure equilibrium assumption is relaxed and a pressure non-equilibrium model is developed. It results in a single velocity, non-conservative hyperbolic model with two energy equations involving relaxation terms. It fulfills the equation of state and energy conservation on both sides of interfaces and guarantees correct transmission of shocks across them. This formulation considerably simplifies numerical resolution. Following a strategy developed previously for another flow model [R. Saurel, R. Abgrall, A multiphase Godunov method for multifluid and multiphase flows, Journal of Computational Physics 150 (1999) 425–467], the hyperbolic part is first solved without relaxation terms with a simple, fast and robust algorithm, valid for unstructured meshes. Second, stiff relaxation terms are solved with a Newton method that also guarantees positivity and robustness. The algorithm and model are compared to exact solutions of the Euler equations as well as solutions of the five-equation model under extreme flow conditions, for interface computation and cavitating flows involving dynamics appearance of interfaces. In order to deal with correct dynamic of shock waves propagating through multiphase mixtures, the artificial heat exchange method of Petitpas et al. [F. Petitpas, E. Franquet, R. Saurel, O. Le Metayer, A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks, Journal of Computational Physics 225(2) (2007) 2214–2248] is adapted to the present formulation.  相似文献   
65.
A new technique for generating a continuous range of true time delay values is introduced. Heating optical fiber in order to change the effective index of the guided mode produces time delays. A 45-m section of single-mode silica fiber is demonstrated to produce a continuous range of time delay values from 0 to 211 ps over a temperature tuning range of 50°C (30–80°C). A thermal time delay factor is introduced and found to be 0.096 ps/m°C for Corning LEAF fiber. A 7.66-m section of multimode Lucina polymer fiber is demonstrated to produce a range of time delay values from 0 to 32 ps over a temperature tuning range of 30°C (30–60°C). The thermal time delay factor for this fiber is −0.1427 ps/m°C.  相似文献   
66.
This is the report of neutrino and astroparticle physics working group at WHEPP-7. Discussions and work on CP violation in long baseline neutrino experiments, ultra high energy neutrinos, supernova neutrinos and water Cerenkov detectors are discussed.  相似文献   
67.
An all-solid-state, side diode array pulse pumped Nd:YAG laser tunable for six wavelengths ranging from 1318.8 nm to 1356.0 nm is developed. The tunability is obtained by using a grating in Littrow mode that also serves as an output coupler. The configuration ensures a line width as low as 0.04 nm. Thermal effects limit the maximum average power to 250 mW for an average absorbed pump power of 8.0 W in the free-running condition. An acousto-optic Q-switching of the laser provides pulses of width 251 ns with peak power of 733 W for an average pump power of 11.5 W. The laser may find application in microsurgery and dermatology. PACS 42.55.Xi; 42.60.-v; 42.60.Fc; 42.60.Gd; 42.62.Be  相似文献   
68.
A systematic study of fullerene hemisphere capped finite SiC nanotubes is presented. The tubes are spin optimized using the hybrid functional B3LYP (Becke?s three-parameter exchange and the Lee-Yang-Parr correlation functionals) and an all electron 3-21G? basis. Capping of a SiC nanotube changes cohesive energy, HOMO-LUMO gap and other electronic and geometric properties of a SiC nanotube. Also, the carbon-capped SiC nanotubes are energetically preferable compared to silicon-capped tubes. For example, the binding energy per atom for hydrogen-terminated “infinite” SiC nanotube (5,5) having five unit cells is 4.993 eV, the corresponding numbers being 5.989 eV and 4.812 eV for C-capped and Si-capped nanotubes, respectively.  相似文献   
69.
70.
The uranyl tellurite mineral moctezumite, Pb(UO2)(TeO3)2, was studied by Raman spectroscopy and complemented with infrared spectroscopy. The presence of the stretching and bending vibrations of uranyl (UO2)2+ and tellurite (TeO3)2− ions was inferred, and the observed bands were assigned to uranyl and tellurite units vibrations. U O bond lengths calculated from the spectra with two empirical relations are close to those inferred from the X‐ray single‐crystal structure of moctezumite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号