首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   0篇
化学   45篇
力学   15篇
数学   7篇
物理学   59篇
  2021年   2篇
  2016年   2篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   6篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1977年   2篇
  1972年   2篇
  1943年   1篇
  1941年   2篇
  1934年   1篇
  1933年   1篇
  1932年   1篇
  1930年   1篇
  1928年   1篇
  1927年   2篇
  1926年   3篇
  1923年   1篇
  1922年   3篇
  1921年   2篇
  1920年   1篇
  1915年   2篇
  1912年   1篇
  1896年   1篇
  1894年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
11.
The results of an experimental investigation of the effect of particles on decaying grid-generated turbulence in a downward vertical turbulent gas-particle flow are presented. The dispersed particles were glass spheres with a mean size of 700 m. Titanium dioxide particles with a mean size of 2 m were used as the particle-markers modeling the carrier-medium flow. The turbulence was generated by grids with square cells of two sizes (4.8 and 10 mm) and an impenetrability parameter equal to 0.49 at a mean flow velocity equal to 9.5 m/s. The grid Reynolds numbers were 3000 and 6300. The damping of turbulence by the particles, manifested in an increase in the turbulence decay rate (viscous dissipation) and a decrease in the turbulence energy in the power-consuming spectral band, was detected.  相似文献   
12.
Modelling of particle-wall collisions in confined gas-particle flows   总被引:5,自引:0,他引:5  
This paper demonstrates that numerical simulations of confined particulate two-phase flows require a detailed modelling of particle—wall collisions which includes the wall surface structure and the particle shape. These effects are taken into account by “irregular bouncing” models which are based on the statistical treatment of the collision process. In this study, results obtained using various “irregular bouncing” models based on the impulse equations for a particle—wall collision are considered and compared with experimental observations. The wall roughness is simulated by assuming that the particle collides with a virtual wall which has a randomly distributed inclination with respect to the plane, smooth wall. A Gaussian distribution for this random inclination showed the best agreement with experimental results. Numerical predictions of a turbulent two—phase flow in a vertical channel, where the particle phase is treated using a Lagrangian approach, showed that the different models applied for a particle-wall collision have a strong effect on the particle velocity fluctuations and the mass flux profiles in the region of fully developed flow. The numerical simulations using the irregular bouncing models yielded considerably higher values for the particle velocity fluctuations, which also agreed better with the experimental values. This effect was most pronounced for large particles, where the distance they need to respond to the fluid flow is larger than the characteristic dimension of the confinement. On the other hand, the motion of small particles is less affected by the choice of the wall-collision model. These effects of the wall roughness on the velocity fluctuations of the dispersed phase have not been considered in previous studies using irregular bouncing models.  相似文献   
13.
14.
DK Choudhury  PK Sahariah 《Pramana》2002,58(4):599-610
We obtain a solution of the DGLAP equation for the gluon at low x first by expanding the gluon in a Taylor series and then using the method of characteristics. We test its validity by comparing it with that of Glück, Reya and Vogt. The convergence criteria of the approximation used are also discussed. We also calculate εF 2(x,Q)2/ε In Q 2 using its approximate relations with the gluon distribution at low x. The predictions are then compared with the HERA data.  相似文献   
15.
16.
Al42 - is a prototype structural unit of a new class of "all-metal aromatic" molecules. Without stabilizing counterions this species is unstable with respect to electron autodetachment in the gas phase. We estimated the height of the repulsive Coulomb barrier to approximately 2.7 eV and calculated a lifetime of 9 fs. This is a short lifetime: The only way to study the isolated dianion experimentally is to use electron scattering techniques. Investigations of the validity of bound-state quantum chemical calculations on the isolated species show that the results suffer from significant admixture of continuum states to the bound-state wave function depending on the basis set. Calculations of molecular properties can therefore give essentially arbitrary results for this ill-defined system, as is demonstrated for the energy and nuclear magnetic shieldings. This substantiates that results from calculations on the isolated dianion should be approached with caution.  相似文献   
17.
(H2O)(6) (-) appears as a "magic" number water cluster in (H2O)(n) (-) mass spectra. The structure of the (H2O)(6) (-) isomer dominating the experimental population has been established only recently [N. I. Hammer et al., J. Phys. Chem. A 109, 7896 (2005)], and the most noteworthy characteristic of this isomer is the localization of the excess electron in the vicinity of a double-acceptor monomer. In the present work, we use a quantum Drude model to characterize the low-energy isomers and the finite temperature properties of (H2O)(6) (-). Comparison with ab initio calculations shows that the use of a water model employing distributed polarizabilities and distributed repulsive sites is necessary to correctly reproduce the energy ordering of the low-lying isomers. Both the simulations and the ab initio calculations predict that there are several isomers of (H2O)(6) (-) significantly lower in energy than the experimentally observed species, suggesting that the experimental distribution is far from equilibrium.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号