首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   27篇
  国内免费   5篇
化学   206篇
晶体学   1篇
力学   4篇
数学   40篇
物理学   73篇
  2024年   1篇
  2023年   1篇
  2022年   18篇
  2021年   12篇
  2020年   17篇
  2019年   25篇
  2018年   27篇
  2017年   14篇
  2016年   29篇
  2015年   21篇
  2014年   25篇
  2013年   49篇
  2012年   23篇
  2011年   25篇
  2010年   14篇
  2009年   10篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
排序方式: 共有324条查询结果,搜索用时 312 毫秒
11.
A novel general method is introduced to predict deflagration temperature of organic energetic compounds containing at least –NNO2, –ONO2, or –CNO2 groups. Deflagration temperature is an important safety parameter in working with dangerous energetic compounds and their environmental problems. It is shown that the contribution of some molecular structure parameters can be used to interpret thermal decomposition of an energetic compound. For 86 energetic materials (corresponding to 102 measured values) with different molecular structures, the new correlation has the root mean square (rms) and the average deviations of 23.8 and 19.0 K, respectively. The new method is also tested for some energetic compounds with complex molecular structures, e.g., two new organic energetic molecules N,N′-bis(1,2,4-triazol-3yl)-4,4′-diamino-2,2′,3,3′,5,5′,6,6′-octanitroazobenzene (BTDAONAB) and 2,4,6-trinitrophloroglucinol.  相似文献   
12.
Silica boron–sulfuric acid nanoparticles (SBSANs) as a solid Lewis-protic acid have been found to be an efficient heterogeneous catalyst in the synthesis of xanthene and acridine derivatives. The SBSAN-catalyzed reaction between carbonyl compound (aldehyde/ketone/ethyl orthoformate) and 5,5-dimethyl-1,3-cyclohexanedione (dimedone) for synthesis of xanthene derivatives is performed under mild conditions with the excellent isolated yield. Also, we can apply a broad scope of carbonyl compounds and amines for efficient synthesis of various acridine derivatives in the presence of SBSAN catalyst. In these multicomponent approaches the SBSAN catalyst can be reused for several times without any treatment in its catalytic activity.  相似文献   
13.
A facile and simple protocol for the 1,3‐dipolar cycloaddition of organic azides with terminal alkynes catalyzed by doped nano‐sized Cu2O on melamine? formaldehyde resin (nano‐Cu2O? MFR) as a new and convenient heterogeneous catalyst is described. In this method, ‘click’ cycloaddition of various structurally diverse β‐azido alcohols and alkynes in the presence of nano‐Cu2O? MFR in H2O/THF 1 : 2 furnished the corresponding 1,4‐disubstituted 1H‐1,2,3‐triazole adducts 1a – 1o in good to excellent yields at room temperature (Scheme and Table 3). The nano‐Cu2O? MFR was characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), inductively coupled plasma (ICP) analysis, and FT‐IR. The nano‐Cu2O? MFR could be easily recovered and recycled from the reaction mixture and reused for many consecutive trials without significant decrease in activity (Table 4). The in vitro antibacterial activities of all synthesized compounds were tested on several Gram‐positive and/or Gram‐negative bacteria (Table 5). The results demonstrate the promising antibacterial activity for some of the synthesized compounds.  相似文献   
14.
A facile and efficient method for dehydration of aldoximes into nitriles using N-(p-toluenesulfonyl) imidazole (TsIm) is described. In this method, aldoximes were refluxed with TsIm in the presence of 1,8-diazabicyclo-[5.4.0]undec-7-ene (DBU) in dimethylformamide (DMF) to afford the corresponding nitriles in good yields. This methodology is highly efficient for various structurally diverse aldoximes including aromatic, heteroaromatic, and aliphatic oximes. A plausible mechanism for the conversion of aldoxime into nitriles using TsIm/DBU is explained.  相似文献   
15.
Xanthenes and their derivatives as very important classes of organic compounds are key structural elements of many biologically active compounds. These materials are important heterocyclic nucleus of various dyes and drugs. Because of their wide range of pharmacological, industrial and synthetic applications, many methods for the preparation of xanthenes are reported in the literature. In recent years, among the other chemists, introduction of new methods for the preparation of these types of compounds has attracted the attention of Iranian chemists. The result of these efforts is the introduction of appropriate, effective and efficient methods. In this paper, we have a brief review on these methods and their main advantages and important applicabilities.  相似文献   
16.
Catalysis Surveys from Asia - 2-(2-Pyridyl)benzimidazole (PyBzIm) was supported onto magnetic mesoporous silica, Fe3O4@SiO2@SBA-15 via the click chemistry. The supported ligand was treated with...  相似文献   
17.
Well-dispersed nanoparticles of nickel hydroxide were prepared via a simple electrochemical method. Electrodeposition experiments were performed from 0.005 M Ni(NO3)2 bath at a constant current density of 0.1 mA cm?2 on the steel cathode for 1 h. Recording the potential values during the deposition process revealed that the reduction of water has major role in the base electrogeneration at the applied conditions. The obtained deposit was characterized by the X-ray diffraction (XRD), infrared (IR), differential scanning calorimeter–thermogravimetric analysis, carbon–nitrogen–hydrogen (CHN), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The CHN, XRD, and IR analyses showed that the obtained deposit has α phase of Ni(OH)2 with intercalated nitrate ions in its structure. Morphological characterization by SEM and TEM revealed that the prepared α-Ni(OH)2 is composed of well-dispersed ultrafine particles with the size of about 5 nm. The supercapacitive performance of the prepared nanoparticles was analyzed by means of cyclic voltammetry and galvanostatic charge–discharge tests. The electrochemical measurements showed an excellent supercapacitive behavior of the prepared α-Ni(OH)2 nanoparticles. It was also observed that the α-Ni(OH)2 ultrafine particles have better electrochemical characteristic and supercapacitive behavior than β-Ni(OH)2 ultrafine nanoparticles, including less positive charging potential, lower E a???E c value, better reversibility, higher E OER???E a, higher utilization of active material, higher proton diffusion coefficient, greater discharge capacity, and better cyclability. These results make the α-Ni(OH)2 nanoparticles as an excellent candidate for the supercapacitor materials.  相似文献   
18.
KF‐Melamine formaldehyde resin (KF‐MFR) was demonstrated to be a highly efficient heterogenious catalyst for cross‐aldol condensation under microwave irradiation. In this synthesis, various aldehydes and ketones were condensed together in the presence of supported KF on melamine‐formaldehyde resin to afford different chalcone derivatives in good to excellent yields. KF‐MFR proved to have unique termal and chemical resistance and can be reused for many consecutive runs without remarkable loss in catalytic activity.  相似文献   
19.
Molecular Diversity - Soluble epoxide hydrolase (sEH) enzyme plays an important role in the metabolism of endogenous chemical mediators, epoxyeicosatrienoic acids, which are involved in the...  相似文献   
20.
Pervaporation (PV) separation of water–acetonitrile mixture using sodium alginate (NaAlg) based mixed matrix membranes (MMM) comprising different amounts of nano NaA zeolite (10, 20 and 30 wt%) is investigated in various concentrations of water and temperatures. The prepared membranes are modified by sulfosuccinic acid (SSA) as a crosslinking agent. NaAlg-NaA/SSA membranes are synthesized by a solution casting technique. The process and membrane performance including separation factor, flux and activation energy of permeation are determined. Results reveal that adding of nano zeolite may lead to an increase in the flux and the separation factor of sodium alginate membrane up to 123 and 169%. In addition, using MMM in dehydration of a feed containing 30 wt% of water shows much better performance than alginate membrane. Furthermore, the activation energy of water permeation through MMM is predicted lower than sodium alginate membrane which reflects the facilitated permeation of water through MMM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号