首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36999篇
  免费   8277篇
  国内免费   1431篇
化学   41005篇
晶体学   345篇
力学   501篇
数学   2254篇
物理学   2602篇
  2023年   18篇
  2022年   25篇
  2021年   172篇
  2020年   1242篇
  2019年   2593篇
  2018年   1021篇
  2017年   655篇
  2016年   3394篇
  2015年   3525篇
  2014年   3441篇
  2013年   4084篇
  2012年   2981篇
  2011年   2190篇
  2010年   2860篇
  2009年   2812篇
  2008年   2368篇
  2007年   1736篇
  2006年   1455篇
  2005年   1639篇
  2004年   1429篇
  2003年   1313篇
  2002年   1989篇
  2001年   1381篇
  2000年   1293篇
  1999年   393篇
  1998年   59篇
  1997年   61篇
  1996年   31篇
  1995年   40篇
  1994年   30篇
  1993年   48篇
  1992年   50篇
  1991年   40篇
  1990年   37篇
  1989年   33篇
  1988年   20篇
  1987年   16篇
  1986年   20篇
  1985年   29篇
  1984年   25篇
  1983年   9篇
  1982年   13篇
  1981年   16篇
  1980年   10篇
  1979年   20篇
  1978年   14篇
  1977年   9篇
  1976年   9篇
  1974年   17篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
251.
252.
253.
254.
Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.  相似文献   
255.
256.
To investigate the pigments and decoration applied to a wood‐based lacquer painting screen from the tomb of Si‐ma Jin‐long, Shanxi Province, central China, made by Chinese craftsmen in the 5th century, a combination of micro‐Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), wavelength dispersive X‐ray fluorescence (WDXRF), and microscopic examination was used. The obtained results are as follows: (1) the black, yellow, and red colors are identified as carbon black, orpiment and realgar, and cinnabar, respectively, by using micro‐Raman spectroscopy. The FTIR result shows that the white pigment filled in the leaves is not lead white, as assumed in the literature, but gypsum. Whether lead white was used at other locations remains unanswered and requires more samples for further work; (2) the thickness of each discernable pigment layer, as observed under the microscope, is approximately equal and the differences among them are small, suggesting a superfine painting skill; besides, a noticeable smooth interface between wood and the red grounding substance indicates that a polishing process might have been applied before the painting; (3) the red background was proved to contain cinnabar, but further FTIR analyses found no evidence for the presence of Chinese wood oil; and (4) the most interesting finding, rarely reported before, is that white grains of different sizes are found in both pigment layers and the grounding substance, which are perhaps an intentional addition. Further, in situ XRF and Raman analyses indicate that they are sourced from hydroxyapatite, coming probably from the intentional addition of animal bone ash to the lacquer. But how such a process could be finished and what purpose it served have not yet been answered. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
257.
Signal changes can be detected by proton density-weighted functional imaging in both the brain and the spinal cord. These are attributed to changes in extravascular water proton (signal enhancement by extravascular protons) density during neuronal activation. In this study, we used this technique to detect correlations between acupoint stimulation and neural activity in the spinal cord. Stimulation of acupoints associated with treatment of sensorimotor deficits (LI4 and LI11) was performed on 11 volunteers. During stimulation, 8 of the 11 subjects had consistent functional activations in C6/C7. A bilateral activation pattern was common. Our findings show that acupoint stimulation modulates activity in the spinal cord.  相似文献   
258.
A surface‐enhanced Raman scattering (SERS) active substrate for the detection of polycyclic aromatic hydrocarbons (PAHs) was developed, which used 25, 27‐dimercaptoacetic acid‐26, 28‐dihydroxy‐4‐terbutyl calix[4]arene (DMCX) to functionalize a gold colloid film. This SERS‐active substrate prepared by self‐assembly method exhibits a high sensitivity, especially for the detection of PAHs. With the use of this SERS‐active substrate and with the application of the shifted excitation Raman difference spectroscopy (SERDS) technique, Raman signals of pyrene and anthracene in aqueous solutions at low concentration level (500 pM) can be obtained. Moreover, because PAHs are blocked from being directly adsorbed on gold colloid by DMCX and the photochemical reactions of adsorbates are avoided, the Raman bands of PAHs adsorbed on DMCX‐fuctionalized gold colloid film can be one‐to‐one correspondence with those of solid PAHs, and additionally, this SERS‐active substrate can be easily cleaned and reused. The obtained results demonstrate that the DMCX‐functionalized gold colloid films prepared by self‐assembly method have great potential to be developed to an in situ PAHs detection substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
259.
We demonstrate a technique for simultaneous detection of coherent anti‐Stokes Raman scattering (CARS) at four vibrational frequencies, using simple passive optical elements and without spectrally resolved detection. The technique is based on pump and Stokes femtosecond pulses selectively exciting vibrational resonances through spectral focusing. By replicating the pump and Stokes pair into four pairs, each traveling through appropriate glass elements, we simultaneously excite four different vibrational frequencies. The resulting CARS is a periodic train of intensities detected by a single photomultiplier and frequency analyzed to retrieve its Fourier coefficients. We demonstrate detection of methanol and ethanol mixtures in water and quantitative determination of their concentration owing to the improved chemical selectivity of this quadruplex CARS scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
260.
We present experimental results of the time‐dependent Raman signal response of fluoranthene adsorbed on a naturally grown Ag nanoparticle ensemble, which serves as surface enhanced Raman scattering (SERS) substrate. In addition, SERS characteristics such as the concentration‐dependent calibration curves and the limit of detection (LOD) for fluoranthene in distilled water will be shown. The SERS substrate was prepared by Volmer–Weber growth under ultrahigh vacuum condition and exhibits a plasmon resonance wavelength at 491 nm. For the measurement of SERS signal response and SERS/shifted excitation Raman difference spectroscopy spectra of fluoranthene in water, experimental Raman setup containing a microsystem light source with two emission wavelengths (487.61 nm and 487.91 nm) was used. We experimentally demonstrate that the maximum SERS intensity is achieved 9 min after changing the analyte concentration from 0 nmol/l to 600 nmol/l. This response time is explained by a time‐dependent adsorption of the probe molecules onto the nanoparticles. The LOD for fluoranthene in water was evaluated applying shifted excitation Raman difference spectroscopy (SERDS) at different molecule concentrations. For SERDS, two emission wavelengths of a prototype microsystem light source have been used for Raman excitation. The experimental results reveal that the LOD for the probe molecules is very low. Experimentally, we have detected a fluoranthene concentration of only 4 nmol/l, which is very close to our estimated LOD of 2 nmol/l. Thus, the presented Raman setup, with a SERS substrate, whose plasmon resonance coincides with the excitation wavelength for SERS measurements, is well suited for in‐situ trace detection of pollutant chemicals in water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号