首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10815篇
  免费   517篇
  国内免费   56篇
化学   7922篇
晶体学   137篇
力学   192篇
综合类   1篇
数学   1331篇
物理学   1805篇
  2023年   101篇
  2022年   116篇
  2021年   175篇
  2020年   289篇
  2019年   262篇
  2018年   151篇
  2017年   166篇
  2016年   361篇
  2015年   345篇
  2014年   371篇
  2013年   473篇
  2012年   678篇
  2011年   695篇
  2010年   394篇
  2009年   393篇
  2008年   614篇
  2007年   615篇
  2006年   573篇
  2005年   549篇
  2004年   483篇
  2003年   329篇
  2002年   381篇
  2001年   179篇
  2000年   167篇
  1999年   123篇
  1998年   152篇
  1997年   132篇
  1996年   156篇
  1995年   133篇
  1994年   89篇
  1993年   96篇
  1992年   105篇
  1991年   81篇
  1990年   93篇
  1989年   79篇
  1988年   80篇
  1987年   79篇
  1986年   66篇
  1985年   85篇
  1984年   76篇
  1983年   67篇
  1982年   56篇
  1981年   90篇
  1980年   74篇
  1979年   47篇
  1978年   51篇
  1977年   65篇
  1976年   42篇
  1975年   35篇
  1973年   51篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Dense monoenergetic proton beams from chirped laser-plasma interaction   总被引:1,自引:0,他引:1  
Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).  相似文献   
992.
Graphene nanostructures are promising candidates for future nanoelectronics and solid-state quantum information technology. In this review we provide an overview of a number of electron transport experiments on etched graphene nanostructures. We briefly revisit the electronic properties and the transport characteristics of bulk, i.e., two-dimensional graphene. The fabrication techniques for making graphene nanostructures such as nanoribbons, single electron transistors and quantum dots, mainly based on a dry etching ??paper-cutting?? technique are discussed in detail. The limitations of the current fabrication technology are discussed when we outline the quantum transport properties of the nanostructured devices. In particular we focus here on transport through graphene nanoribbons and constrictions, single electron transistors as well as on graphene quantum dots including double quantum dots. These quasi-one-dimensional (nanoribbons) and quasi-zero-dimensional (quantum dots) graphene nanostructures show a clear route of how to overcome the gapless nature of graphene allowing the confinement of individual carriers and their control by lateral graphene gates and charge detectors. In particular, we emphasize that graphene quantum dots and double quantum dots are very promising systems for spin-based solid state quantum computation, since they are believed to have exceptionally long spin coherence times due to weak spin-orbit coupling and weak hyperfine interaction in graphene.  相似文献   
993.
A reactivity study was undertaken to compare and assess the rate of dechlorination of chlorinated aliphatic hydrocarbons (CAHs) by annealed and non-annealed nanoscale iron particles. The current study aims to resolve the uncertainties in recently published work studying the effect of the annealing process on the reduction capability of nanoscale Fe particles. Comparison of the normalized rate constants (m2/h/L) obtained for dechlorination reactions of trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) indicated that annealing nanoscale Fe particles increases their reactivity ~30-fold. An electron transfer reaction mechanism for both types of nanoscale particles was found to be responsible for CAH dechlorination, rather than a reduction reaction by activated H2 on the particle surface (i.e., hydrogenation, hydrogenolysis). Surface analysis of the particulate material using X-ray diffraction (XRD) and transmission electron microscopy (TEM) together with surface area measurement by Brunauer, Emmett, Teller (BET) indicate that the vacuum annealing process decreases the surface area and increases crystallinity. BET surface area analysis recorded a decrease in nanoscale Fe particle surface area from 19.0 to 4.8 m2/g and crystallite dimensions inside the particle increased from 8.7 to 18.2 nm as a result of annealing.  相似文献   
994.
The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10?C50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3?C6 × 106 cm?3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.  相似文献   
995.
The charge-density-wave phase of TiSe(2) was studied by angle-resolved photoelectron spectroscopy and resistivity measurements investigating the influence of the band gap size and of a varying population of the conduction band. A gradual suppression of the charge-density-wave-induced electronic superstructure is observed for a variation of the band gap in the ternary compounds TiC(x)Se(2-x) with C=(S,Te) as well as for an occupation of only the conduction band by H(2)O adsorption-induced band bending. These observations point to an optimum band gap and support an excitonic driving force for the charge-density wave.  相似文献   
996.
We present an initial demonstration of simultaneous velocity and temperature mapping in gaseous flow fields using a new nitric oxide planar laser-induced fluorescence-based method. The vibrationally excited NO monitoring (VENOM) technique is an extension of two-component velocimetry using vibrationally excited NO generated from the photodissociation of seeded NO(2) [Appl. Opt. 48, 4414 (2009)], where the two sequential fluorescence images are obtained probing two different rotational states to provide both velocity and temperature maps. Comparisons to computational fluid dynamics simulations show that the initial VENOM measurements provide good velocity and temperature maps in the relatively high-density regions of the flow, where the rms uncertainties are approximately 5% for velocity and 9% for temperature.  相似文献   
997.
In this Letter, we propose a generic nonlinear coupling coefficient, η(NL)2=η|γ/β?|(fiber2)/|γ/β?|(fiber1), which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η(NL) to demonstrate a significant soliton self-frequency shift of a fundamental soliton, and we show that nonlinear matching can take precedence over linear mode matching. The nonlinear coupling coefficient depends on both the dispersion (β?) and nonlinearity (γ), as well as on the power coupling efficiency η. Being generic, η(NL) enables engineering of general waveguide systems, e.g., for optimized Raman redshift or supercontinuum generation.  相似文献   
998.
Distributed-feedback laser diodes emitting at 780?nm have been evaluated, with respect to the aging of the injection current required for reaching the rubidium D2 resonance line. Results obtained for lasers operating in air and in vacuum for 9 months are reported. When operated at constant temperature, the laser current required for emission at the wavelength of the desired atomic resonance is found to decrease by 50 to 80?μA per month. The impact of this result on the lifetime and long-term performances of laser-pumped rubidium atomic clocks is discussed.  相似文献   
999.
We demonstrate how the gradient of the tapering in a tapered fiber can significantly affect the trapping and blueshift of dispersive waves (DWs) by a soliton. By modeling the propagation of a fundamental 10?fs soliton through tapered fibers with varying gradients, it is shown that the soliton traps and blueshifts an increased fraction of the energy in its DW when the gradient is decreased. This is quantified by the group-acceleration mismatch between the soliton and DW at the entrance of the taper. These findings have direct implications for the achievable power in the blue edge of a supercontinuum generated in a tapered fiber and explain observations of a lack of power in the blue edge.  相似文献   
1000.
Buth C  Kohler MC  Ullrich J  Keitel CH 《Optics letters》2011,36(17):3530-3532
The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d→4p resonance in the ion. We assume an 800?nm laser with an intensity of about 10(14)?W/cm2 and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 10(13)-10(16)W cm2. Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-based spectroscopy involving core orbitals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号