The electronic structures and optical properties of TiAl intermetallic alloy system are studied by the first-principle orthogonalized linear combination of atomic orbitals method. Results on the band structure, total and partial density of states, localization index, effective atomic charges, and optical conductivity are presented and discussed in detail. Total density of states spectra reveal that (near the Fermi level) the majority of the contribution is from Ti-3d states. The effective charge calculations show an average charge transfer of 0.52 electrons from Ti to Al in primitive cell calculations of TiAl alloy. On the other hand, calculations using supercell approach reveal an average charge transfer of 0.48 electrons from Ti to Al. The localization index calculations, of primitive cell as well as of supercell, show the presence of relatively localized states even above the Fermi level for this alloy. The calculated optical conductivity spectra of TiAl alloy are rich in structures, showing the highest peak at 5.73 eV for supercell calculations. Calculations of the imaginary part of the linear dielectric function show a prominent peak at 5.71 eV and a plateau in the range 1.1-3.5 eV. 相似文献
The recurrence tracking microscope for probing nanostructures on a surface is based on the quantum recurrence phenomenon. We report that condensed atoms bouncing off on the atomic mirror, connected to a cantilever, modify the quantum recurrences. The times at which the recurrences occur depend on the initial energy of the bouncing condensates above the atomic mirror, which change with the density of condensed atoms. 相似文献
Natural and anthropogenic radioactivity of sand and water samples collected from the four big rivers of Punjab province, Pakistan, was measured using a high-purity germanium detector coupled with a high resolution multichannel analyser. The average concentration of the naturally occurring radionuclides (226)Ra, (232)Th and (40)K in all the sand samples from the rivers Jhelum, Chenab, Ravi and Indus was found to be 22±0.6, 36±1 and 287±10 Bq kg (-1), respectively, while the concentration of the anthropogenic radionuclide (137)Cs was found to be below the minimum detectable activity, i.e. ~1.2 Bq?kg (-1). All the sand samples have Ra(eq) concentrations lower than the limit of 370 Bq kg (-1). Indoor (H (in)) and outdoor (H (out)) radiation hazard indices were calculated for the samples to assess the radiation hazards arising due to the use of this sand in construction, and were found to be less than unity in the study area. Calculated values of the absorbed dose rate were less than the typical world average value of 59 nGy h (-1), and the annual effective dose rate was also less than the typical world value of 70 μSv, except in the Indus river, in which it is slightly higher then the world average. Results show that the measured values are comparable with other global radioactivity measurements. None of the studied riverbeds was considered a radiological hazard, and their sand can be safely used in construction. 相似文献
In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan–Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system. 相似文献
BaWO4 nanoparticles were successfully used as the photocatalysts in the degradation of methylthioninium chloride (MTC) dye at different pH levels of aqueous solution. Pure phase of barium tungstate (BaWO4) nanoparticles was synthesized by modified molten salt process at 500 °C for 6 h. Structural and morphological characterizations of BaWO4 nanoparticles (average particle size of ~40 nm) were studied in details using powder x-ray diffraction (XRD), FTIR, Raman, energy-dispersive, electron microscopic, and x-ray photoelectron spectroscopy (XPS) techniques. Direct band gap energy of BaWO4 nanoparticles was found to be ~3.06 eV from the UV–visible absorption spectroscopy followed by Tauc’s model. Photocatalytic properties of the nanoparticles were also investigated systematically for the degradation of MTC dye solution in various mediums. BaWO4 nanoparticles claim the significant enhancement of the photocatalytic degradation of aqueous MTC dye to non-hazardous inorganic constitutes under alkaline, neutral, and acidic mediums.
Theβ-decay of100Y has been investigated at the gas filled recoil separator JOSEF by means ofγ-ray and conversion electron spectroscopy. Twoβ-decay modes, of half lives 0.94±0.03 s and 0.55±0.15 s, have been observed. Using Xγ-, Xce-, γγ- andγce-coincidences the level scheme of100Zr has been constructed. An excited 02+ state at 331.3 keV has been discovered in this nucleus. Theβ-decay from the 0.55 s decay mode in100Y shows a strong preference for the ground state compared to the 02+ state in100Zr. The structure of100Zr and the nature of the 02+ level is discussed in the light of the present results. 相似文献
AbstractNovel Mannich base derivatives of glabridin were synthesized and their antiproliferative activity were performed along with our previously reported glabridin-chalcone hybrids molecules (GCHMs) against various human cell lines MDA-MB-231 (breast adenocarcinoma), HEK-293 (embryonic kidney cell line), K562 (leukemia), MCF-7 (breast adenocarcinoma), HeLa (cervix adenocarcinoma), HepG2 (hepatocellular carcinoma) and WRL-68 (hepatic carcinoma). The result showed that the glabridin significantly reduced cell proliferation with IC50 ranges from 3.67 to 58.30?µM against all the tested cell lines. The remarkable reduction in antiproliferative activity 2’,4’-dimethoxyglabridin and GCHMs compounds with phenolic OH groups protected by methoxy (OCH3) groups suggested that the free OH groups are essential factor for the antiproliferative activity of glabridin and its derivatives. The Mannich base derivatives of glabridin showed moderate activity IC50 (2.20–>95.78?µM). Furthermore, in silico target identification analysis revealed that AKT1, DECR1 and NOS1 are the potential targets for glabridin and their derivatives. 相似文献