首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   9篇
  国内免费   6篇
化学   300篇
晶体学   26篇
力学   6篇
数学   76篇
物理学   173篇
  2023年   5篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2016年   5篇
  2015年   7篇
  2014年   6篇
  2013年   16篇
  2012年   20篇
  2011年   19篇
  2010年   14篇
  2009年   9篇
  2008年   25篇
  2007年   21篇
  2006年   24篇
  2005年   24篇
  2004年   25篇
  2003年   13篇
  2002年   13篇
  2001年   26篇
  2000年   19篇
  1999年   14篇
  1998年   6篇
  1997年   13篇
  1996年   14篇
  1995年   12篇
  1994年   13篇
  1993年   16篇
  1992年   4篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1987年   5篇
  1986年   4篇
  1985年   7篇
  1983年   7篇
  1982年   11篇
  1981年   10篇
  1980年   10篇
  1979年   17篇
  1978年   7篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1970年   5篇
  1968年   6篇
  1955年   3篇
  1939年   3篇
  1922年   4篇
  1921年   3篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
91.
92.
The field of research focused on the synthesis of micro- and nanoparticles has not yet conclusively addressed the challenges presented by the hierarchical control of surface topography. An established approach to hierarchical multicomposite nanostructured particles is based on template-directed synthesis, while spectacular advances have been reached in nanoparticle fabrication based on a variety of physicochemical processes. These results exemplify an additive route to hierarchical control, where multiple layers are stacked onto each other or where discretely identifiable particles are assembled into a larger spherical conglomerate. We present here a new strategy for the synthesis of micro- and nanoparticles, which we refer to as "textured isomorphic synthesis", that uses only the toolbox of inorganic chemistry coupled to the physics of cavitation, viscous fingering, and bubble nucleation. The results illustrate a topological route to hierarchical control of particle topography where dimples or holes are deterministically introduced on a planar substrate later transformed into isomorphic hollow spherical micro- and nanostructures.  相似文献   
93.
Corannulene (COR) buckybowls were proposed as near ideal hosts for fullerene C60, but direct complexation of C60 and COR has remained a challenge in supramolecular chemistry. We report the formation of surface-supported COR-C60 host-guest complexes by deposition of C60 onto a COR lattice on Cu(110). Variable-temperature scanning tunneling microscopy studies reveal two distinctly different states of C60 on the COR host lattice, with different binding energies and bowl-ball separations. The transition from a weakly bound precursor state to a strongly bound host-guest complex is found to be thermally activated. Simple model calculations show that this bistability originates from a subtle interplay between homo- and heteromolecular interactions.  相似文献   
94.
95.
96.
97.
98.
99.
In this paper we consider the evolution by surface diffusion of material voids in a linearly elastic solid, focusing on the evolution of voids with large surface energy anisotropy. It is well known that models for the time evolution of similar material surfaces can become mathematically ill-posed when the surface energy is highly anisotropic. In some cases, this ill-posedness has been associated with the formation of corners along the interface. Here the ill-posedness is removed through a regularization which incorporates higher order terms in the surface energy. Spectrally accurate numerical simulations are performed to calculate the steady-state solution branches and time-dependent evolution of voids, with a particular emphasis on inferring trends in the zero regularization (c→0) limit. For steady voids with large anisotropy we find that apparent corners form as c→0. In the presence of elastic stresses σ the limiting corner angles are most often found to differ from angles found on the (σ=0) Wulff shape. For large elastic stresses we find that steady solutions no longer exist; instead the void steadily lengthens via a filamenting instability referred to as tip streaming.  相似文献   
100.

Some Dido-type Inequalities

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号