首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   1篇
化学   39篇
数学   3篇
物理学   24篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1933年   1篇
排序方式: 共有66条查询结果,搜索用时 76 毫秒
21.
In this paper, we report the green synthesis of 1-(4-ferrocenylbutyl)piperazine chemically grafted rGO (P.Fc/rGO) as a battery-type supercapacitor electrode material. For this purpose, initially, the ability of the aqueous Damson fruit extract is investigated in the reduction reaction of graphene oxide (GO). 1-(4-ferrocenylbutyl)piperazine (P.Fc) is synthesized via nucleophilic substitution reaction of piperazine with as-synthesized 4-chlorobutylferrocene. In continue, P. Fc is incorporated to GO by ring-opening reaction of epoxide groups on the GO surface. In the next step, the modified reduction method by aqueous Damson fruit extract was used to prepare the P.Fc/rGO from P.Fc/GO. The prepared materials were characterized by various techniques including FT-IR, Uv–vis, XRD, SEM, EDX, and BET. N2 adsorption–desorption data of P.Fc/rGO nanocomposite shows that the surface area is 37.746 m2 g−1. The capability of P.Fc/rGO nanocomposite for using as an energy storage electrode material in battery-type supercapacitor was examined by investigation of its electrochemical behavior by CV, EIS, and GCD measurements. The charge storage capacity of 1,102 mAh g−1 is achieved at 2.5 A g−1. This nanocomposite shows 89% retention of charge storage capacity after 2000 CV cycles.  相似文献   
22.
An efficient, one-pot, solvent-free, regioselective synthesis of functionalized [1,6]-naphthyridines was explored by a heterogeneous catalyst via a three-component multicomponent reaction (MCR). KF/basic alumina–catalyzed double heteroannulation of aryl alkyl ketones, malononitrile, and alkyl amines generates the compounds with high appendage diversity combinatorially via Knoevenagel condensation followed by Michael addition and cyclization pathway. Short reaction time, high yield, simple reaction technique, and recoverability and reusability of the catalyst without compromising the yield and purity of the compounds are the salient features of this methodology. Additionally, these compounds exhibit promising photophysical properties.  相似文献   
23.
24.
1-Alkyl-3-methylimidazolium cation based ionic liquids efficiently catalyze N-tert-butyloxycarbonylation of amines with excellent chemoselectivity. The catalytic role of the ionic liquid is envisaged as "electrophilic activation" of di-tert-butyl dicarbonate (Boc(2)O) through bifurcated hydrogen bond formation with the C-2 hydrogen of the 1-alkyl-3-methylimidazolium cation and has been supported by a downfield shift of the imidazolium C-2 hydrogen of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][NTf(2)]) from δ 8.39 to 8.66 in the presence of Boc(2)O in the (1)H NMR and a drastic reduction of the catalytic efficiency with 1-butyl-2,3-dimethylimidazolium ionic liquids that are devoid of the C-2 hydrogen. The differential time required for reaction with aromatic and aliphatic amines has offered means for selective N-t-Boc formation during inter and intramolecular competitions. Preferential N-t-Boc formation with secondary aliphatic amine has been achieved in the presence of primary aliphatic amine. Comparison of the catalytic efficiency for N-t-Boc formation with a common substrate revealed that [bmim][NTf(2)] is superior to the reported Lewis acid catalysts.  相似文献   
25.
Hydrogen bond induced reactivity and selectivity control in the 1-butyl-3-methylimidazolium based ionic liquid catalysed reaction of thiols with α,β-unsaturated carbonyl compounds is reported with remarkable influence of the anion and the C-2 hydrogen in catalytic activity and reversal of selectivity.  相似文献   
26.
Photochemical enantioselective nickel‐catalyzed cross‐coupling reactions are difficult to implement. We report a visible‐light‐mediated strategy that successfully couples symmetrical anhydrides and 4‐alkyl dihydropyridines (DHPs) to afford enantioenriched α‐substituted ketones under mild conditions. The chemistry does not require exogenous photocatalysts. It is triggered by the direct excitation of DHPs, which act as a radical source and as a reductant, facilitating the turnover of the chiral catalytic nickel complex.  相似文献   
27.

Radon gas is the predominant ionizing radiation on earth. Its occurrence is controlled by the presence of uranium in all types of rocks in the earthcrust, apart from local geological features and atmospheric factors which influence its release into the atmosphere. The present work deals with 24 h observation of the dependence of radon exhalation rate from soil on local meteorological parameters at four locations in Bakreswar–Tantloi geothermal region, located in the highly faulted Chhotanagpur Plateau of eastern India. This study is the primary step towards the determination of soil radon exhalation dynamics in this geothermal area.

  相似文献   
28.
A Solid State Nuclear Track Detector (SSNTD) can be used to identify an impinging ion as well as to determine the energy of that ion. The track of the ion is made visible by chemically ‘etching’ the detector after exposure. By finding out the ratio of the track-etch rate (Vt) to the bulk-etch rate (Vg), together with the range of the ion in the detector, the identity and the energy of the ion can be ascertained. The required measurements can be conveniently made with the help of a microscope when the angle of incidence of the ion, with respect to the normal direction to the detector surface, is more than 15°. For normal or near normal incidence, uncertainties plague the measurement of the depth of the etch pit and hence the range of the particle. Through this article we wish to suggest an alternative method of assessment, based on the observation of diffraction rings, of the depth of an etch pit.  相似文献   
29.
Biodiesel is considered a sustainable alternative to petro-diesel owing to several favorable characteristics. However, higher production costs, primarily due to the use of costly edible oils as raw materials, are a chief impediment to its pecuniary feasibility. Exploring non-edible oils as raw material for biodiesel is an attractive strategy that would address the economic constraints associated with biodiesel production. This research aims to optimize the reaction conditions for the production of biodiesel through an alkali-catalyzed transesterification of Tamarindus indica seed oil. The Taguchi method was applied to optimize performance parameters such as alcohol-to-oil molar ratio, catalyst amount, and reaction time. The fatty acid content of both oil and biodiesel was determined using gas chromatography. The optimized conditions of alcohol-to-oil molar ratio (6:1), catalyst (1.5% w/w), and reaction time 1 h afforded biodiesel with 93.5% yield. The most considerable contribution came from the molar ratio of alcohol to oil (75.9%) followed by the amount of catalyst (20.7%). In another case, alcohol to oil molar ratio (9:1), catalyst (1.5% w/w) and reaction time 1.5 h afforded biodiesel 82.5% yield. The fuel properties of Tamarindus indica methyl esters produced under ideal conditions were within ASTM D6751 biodiesel specified limits. Findings of the study indicate that Tamarindus indica may be chosen as a prospective and viable option for large-scale production of biodiesel, making it a substitute for petro-diesel.  相似文献   
30.
Background: Morinda elliptica (family Rubiaceae), locally known as ‘mengkudu kecil’, has been used by the Malays for medicinal purposes. Anthraquinones isolated from the roots of Morinda elliptica, namely nordamnacanthal and damnacanthal, have been widely reported to exhibit anticancer and antioxidant properties in various cancer models in vitro and in vivo. Aim: This study analyzed the morphological and ultrastructural effects of damnacanthal and nordamnacanthal on T-lymphoblastic leukemia CEM-SS cells. Method: Light microscopy, Giemsa staining, Wright’s staining, scanning electron microscopy, and transmission electron microscopy were carried out to determine apoptosis, necrosis, and ultrastructural changes that occurred within the cells. Results: The outcomes showed that these compounds induced cell death by apoptosis and necrosis, specifically at higher doses of 10 and 30 μg/mL. Condensation and fragmentation of the nuclear chromatin, which further separated into small, membrane-bound vesicles known as apoptotic bodies, were observed in the nuclei and cytoplasm. The plasma membranes and cytoskeletons also showed marked morphological changes upon treatment with damnacanthal and nordamnacanthal, indicating apoptosis. Conclusion: Therefore, we report that damnacanthal and nordamnacanthal exhibit anticancer properties by inducing apoptosis and necrosis in CEM-SS cells, and they have potential as a drug for the treatment of T-lymphoblastic leukemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号