首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77894篇
  免费   326篇
  国内免费   375篇
化学   24071篇
晶体学   790篇
力学   6725篇
数学   31947篇
物理学   15062篇
  2018年   10433篇
  2017年   10257篇
  2016年   6053篇
  2015年   841篇
  2014年   284篇
  2013年   302篇
  2012年   3767篇
  2011年   10486篇
  2010年   5618篇
  2009年   6035篇
  2008年   6576篇
  2007年   8748篇
  2006年   214篇
  2005年   1292篇
  2004年   1518篇
  2003年   1975篇
  2002年   1006篇
  2001年   249篇
  2000年   295篇
  1999年   152篇
  1998年   192篇
  1997年   148篇
  1996年   199篇
  1995年   120篇
  1994年   75篇
  1993年   99篇
  1992年   54篇
  1991年   64篇
  1990年   50篇
  1989年   60篇
  1988年   61篇
  1987年   59篇
  1986年   61篇
  1985年   48篇
  1984年   44篇
  1983年   39篇
  1982年   46篇
  1981年   42篇
  1980年   48篇
  1979年   47篇
  1978年   36篇
  1973年   26篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1910年   24篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
  1904年   28篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The main aim of this paper is to contribute to the construction of Green’s functions for initial boundary value problems for fourth order partial differential equations. In this paper, we consider a transversely vibrating homogeneous semi-infinite beam with classical boundary conditions such as pinned, sliding, clamped or with a non-classical boundary conditions such as dampers. This problem is of important interest in the context of the foundation of exact solutions for semi-infinite beams with boundary damping. The Green’s functions are explicitly given by using the method of Laplace transforms. The analytical results are validated by references and numerical methods. It is shown how the general solution for a semi-infinite beam equation with boundary damping can be constructed by the Green’s function method, and how damping properties can be obtained.  相似文献   
992.
One of the main applications in plasma physics concerns the energy production through thermo-nuclear fusion. The controlled fusion is achieved by magnetic confinement i.e., the plasma is confined into a toroidal domain (tokamak) under the action of huge magnetic fields. Several models exist for describing the evolution of strongly magnetized plasmas, most of them by neglecting the collisions between particles. The subject matter of this paper is to investigate the effect of large magnetic fields with respect to a collision mechanism. We consider here linear collision Boltzmann operators and derive, by averaging with respect to the fast cyclotronic motion due to strong magnetic forces, their effective collision kernels.  相似文献   
993.
In this work, the films of poly(ether-block-amide) (Pebax 1657) and hydrophilic/hydrophobic silica nanoparticles (0–10 wt%) were coated on a poly(vinyl chloride) (PVC) ultrafiltration membrane to form new mixed matrix composite membranes (MMCMs) for CO2/N2 separation. The membranes were characterized by SEM, FTIR, DSC and XRD. Successful formation of a non-porous defect-free dense top layer with ~4 μm of thickness and also uniform dispersion of silica nanoparticles up to 8 wt% loading in Pebax matrix were confirmed by SEM images. The gas permeation results showed an increase in the permeance of all gases and an increase in ideal CO2/N2 selectivity with the increase in silica nanoparticle contents. Comparison between the incorporation of hydrophilic and hydrophobic silica nanoparticle into Pebax matrix revealed that the great enhancement of CO2 solubility is the key factor for the performance improvement of Pebax + silica nanoparticle membranes. The best separation performance of the hydrophilic silica nanoparticle-incorporated Pebax/PVC membrane for pure gases (at 1 bar and 25 °C) was obtained with a CO2 permeability of 124 barrer and an ideal CO2/N2 selectivity of 76, i.e., 63 and 35% higher than those of neat Pebax membrane, respectively. The corresponding values for hydrophobic silica nanoparticle-incorporated Pebax/PVC membrane were 107 barrer for CO2 permeability and 61 for ideal CO2/N2 selectivity. Also the performances of MMCMs improved upon pressure increase (1–10 bar) owing to the shift in plasticizing effect of CO2 towards the higher pressures. In addition, an increase in permeabilities with a decrease in ideal selectivity was observed upon temperature increase (25–50 °C) due to the intensification of chain mobility.  相似文献   
994.
We analyze the dynamics of a gas particle moving through a nanopore of adjustable width with particular emphasis on ergodicity. We give a measure of the portion of phase space that is characterized by quasiperiodic trajectories which break ergodicity. The interactions between particle and wall atoms are mediated by a Lennard-Jones potential, so that an analytical treatment of the dynamics is not feasible, but making the system more physically realistic. In view of recent studies, which proved non-ergodicity for systems with scatterers interacting via smooth potentials, we find that the non-ergodic component of the phase space for energy levels typical of experiments, is surprisingly small, i.e. we conclude that the ergodic hypothesis is a reasonable approximation even for a single particle trapped in a nanopore. Due to the numerical scope of this work, our focus will be the onset of ergodic behavior which is evident on time scales accessible to simulations and experimental observations rather than ergodicity in the infinite time limit.  相似文献   
995.
996.
This study examines the alkylation of diphenylamine (DPA) with nonene (NON) in a liquid phase catalyzed by acid-treated clay-based catalysts from commercial suppliers (Fulcat 22B, Nobelin MM, and Jeltar 300). Alkylations were conducted to achieve the highest possible selectivity of diisononyldiphenylamine (DNDPA), low selectivity of monoisononyldiphenylamine, and a maximum triisononyldiphenylamine yield of 4%. This study also examines the reaction conditions to selectively form dialkylated diphenylamine from DPA and NON in a batch reactor. Repeated use of the catalyst during the alkylation of DPA with NON was also investigated. Catalyst deactivation takes place during the alkylation of each batch and intensifies with repeated catalyst use, resulting in low DNDPA selectivity. The regenerated catalyst was sufficiently active only until the regeneration of the first and second batches. After the third batch, the catalyst’s selectivity for DNDPA was very low, and its reuse in the alkylation of DPA with NON was not efficient. Therefore, to achieve the maximum length of catalyst activity, the fresh catalyst was gradually added to the used catalyst from a previous batch, thus maintaining a high activity of eight batches. The reduction in catalyst activity was probably caused by the irreversible adsorption of substances on the surface, a loss of microporous structure, and a loss of surface acidity. DPA or alkylated products are adsorbed on the surface oxygen of the catalyst through nitrogen and form nitro formations. The fresh and regenerated catalysts were characterized by their surface area, surface acidity, pore size distribution, and pore volume.  相似文献   
997.
998.
999.
This paper draws a line from early attempts of modeling stick-slip microdrives to open questions from today’s research. As a basis, it contains a collection of substantial investigations on piezo-actuated stick-slip microdrives for nanomanipulation purposes. Friction models showing special characteristics and their mathematical representations are reviewed. It is found that the working properties of stick-slip drives strongly depend on friction characteristics of the contact points between the guiding elements, which is known for years. However, numerous publications in the field of friction and remaining problems — which cannot be explained by known friction models — indicate that there is a demand for even more friction-related research.Former attempts to model stick-slip drives are based on the so-called LuGre friction model, which is shortly presented. An empirical model called CEIM is also analyzed. It is an adaption of the elastoplastic model. The latter can cover not only the phenomenon “0-amplitude’ (described by the authors in recent publications), but also stick-slip based force generation scenarios. Nevertheless, interesting friction characteristics such as the generation of μN forces with stick-slip drives, which are already proven, cannot be covered by known friction models. It is pointed out which characteristics have to be considered.  相似文献   
1000.
An analogue of the Oppenheimer–Synder collapsing model is treated analytically, where the matter source is a scalar field with an exponential potential. An exact solution is derived followed by matching to a suitable exterior geometry, and an analysis of the visibility of the singularity. In some situations, the collapse indeed leads to a finite time curvature singularity, which is always hidden from the exterior by an apparent horizon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号