首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   901篇
  免费   13篇
  国内免费   2篇
化学   472篇
晶体学   12篇
力学   21篇
数学   61篇
物理学   350篇
  2024年   9篇
  2022年   20篇
  2021年   13篇
  2020年   14篇
  2019年   27篇
  2018年   23篇
  2017年   24篇
  2016年   25篇
  2015年   15篇
  2014年   35篇
  2013年   79篇
  2012年   45篇
  2011年   55篇
  2010年   46篇
  2009年   37篇
  2008年   55篇
  2007年   43篇
  2006年   30篇
  2005年   34篇
  2004年   21篇
  2003年   18篇
  2002年   20篇
  2001年   12篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1994年   12篇
  1993年   8篇
  1992年   4篇
  1991年   7篇
  1990年   10篇
  1989年   7篇
  1988年   6篇
  1987年   6篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   5篇
  1982年   5篇
  1981年   10篇
  1980年   8篇
  1979年   7篇
  1978年   8篇
  1977年   10篇
  1976年   4篇
  1975年   6篇
  1974年   10篇
  1973年   12篇
  1971年   5篇
  1959年   5篇
排序方式: 共有916条查询结果,搜索用时 15 毫秒
71.
In the present study, the main protease 3CLpro and non-structural protein (NSP-12 with co-factors 7 and 8) trimer complex are used to study the protein-drug interactions with the phytochemicals from Ocimum Sanctum, Tinospora Cordifolia, Glycyrrhiza Glabra, and Azadirachta Indica. Which can give insight to be used as potent antiviral drugs against SARS-CoV-2. Twenty phytochemicals, five from each plant species, known for their wide range of biological activities were chosen from the literature. The in-silico study was carried out using virtual screening tools and the top five, which showed the least binding energies, were selected. Molecular docking tools revealed that gedunin and epoxy azadiradione proved to be excellent inhibitors for 3CLpro and so did Tinosporide for non-structural-protein complex. Further, the best-hit phytochemicals with respect to structure similarities with FDA drugs and investigatory drugs, were considered for comparative study. Molecular docking was done to check the drug-protein interactions and to check the inhibitory responses of these drugs against the viral protein. The analyses showed that the phytochemicals had similar responses on the protein complex but with exceptionally higher inhibitory responses hence which may be taken for further clinical study.  相似文献   
72.
In the present paper, photovoltaic studies of dye-sensitized solar cells (DSSCs) based on betacyanin/TiO2 and betacyanin/WO3–TiO2 have been done. The cell performances were compared through IV curves and wavelength dependant photocurrent measurements for the two new types of DSSCs. The TiO2-coated DSSC showed the photovoltage and photocurrent of 300 mV and 4.96 mA/cm2, whereas the cell employing WO3–TiO2 photoelectrode showed the values 435 mV and 9.86 mA/cm2, respectively. The conversion efficiency of TiO2 based dye-sensitized solar cell was found to be 0.69 %, while WO3–TiO2-based cell exhibited a higher conversion efficiency of 2.2 %. The better performance of the WO3–TiO2 dye-sensitized solar cell photoelectrode is thought to be due to an inherent energy barrier at the electrode/electrolyte interface leading to the reduced recombination of photoinduced electrons.  相似文献   
73.
Electrophoretic migration of proteins in semidilute polymer solutions   总被引:1,自引:0,他引:1  
We present a systematic study of the electrophoretic migration of 10-200 kDa protein fragments in dilute-polymer solutions using microfluidic chips. The electrophoretic mobility and dispersion of protein samples were measured in a series of monodisperse polydimethylacrylamide (PDMA) polymers of different molecular masses (243, 443, and 764 kDa, polydispersivity index <2) of varying concentration. The polymer solutions were characterized using rheometry. Prior to loading onto the microchip, the polymer solution was mixed with known concentrations of SDS (SDS) surfactant and a staining dye. SDS-denatured protein samples were electrokinetically injected, separated, and detected in the microchip using electric fields ranging from 100 to 300 V/cm. Our results show that the electrophoretic mobility of protein fragments decreases exponentially with the concentration c of the polymer solution. The mobility was found to decrease logarithmically with the molecular weight of the protein fragment. In addition, the mobility was found to be independent of the electric field in the separation channel. The dispersion is relatively independent of polymer concentration and it first increases with protein size and then decreases with a maximum at about 45 kDa. The resolution power of the device decreases with concentration of the PDMA solution but it is always better than 10% of the protein size. The protein migration does not seem to correspond to the Ogston or the reptation models. A semiempirical expression for mobility given by van Winkle fits the data very well.  相似文献   
74.
The current research focused on the development of Platinum–Rhodium alloy coating (Pt– Rh) on SS304 and its applications in antibacterial studies. Electrodeposition is considered to be one of the most suitable methods because it enhances the therapeutic effects of noble metals (Pt–Rh alloy). The electrodeposited coating is an economical and time-saving alternative to existing coating methods. The newly developed Pt–Rh coating was investigated using a scanning electron microscope (SEM) and an atomic force microscope (AFM). Using the agar Petri plate and broth culture method, the antibacterial effect of the platinum-rhodium alloy was investigated against Gram-negative Escherichia coli and Gram-positive bacteria such as Staphylococcus saprophytes, Bacillus Subtilis, and Enterococcus faecalis. The Pt–Rh alloy coated samples obtained by Direct current (DC) and Pulse coating (PC 50% and PC 75%) were examined for antibacterial study. The PC 75% Pt–Rh alloy coating exhibits significant antibacterial activity, demonstrating a maximum zone of inhibition while leaving the rest of the coated samples by DC and PC 50% duty cycles. The study also found that when the concentration of Pt–Rh solution rises from 5 μL to 15 μL, so does the antibacterial activity. The findings of the study showed that electrodeposited platinum-rhodium alloy metal ions may be handy bacteriostatic in the coming years.  相似文献   
75.
We report here the quasielastic neutron scattering (QENS) studies on the dynamics of propylene inside Na-Y zeolite using triple axis spectrometer (TAS) at Dhruva reactor, Trombay. Molecular dynamics (MD) simulations performed on the system had shown that the rotational motion involves energy larger than that involved in the translational motion. Therefore, rotational motion was not observed in our earlier QENS studies on propylene adsorbed Na-Y zeolite using a higher resolution spectrometer at Dhruva. Analysis of the TAS spectra revealed that the quasielastic broadening observed in propylene-loaded zeolite spectra is due to the rotational motion of the propylene molecules. This is consistent with our simulation result. Further, the rotational motion is found to be isotropic. The rotational diffusion coefficient has been obtained.   相似文献   
76.
Benzotrithiophene (BTT) isomers were investigated using density functional theory (DFT) and time‐dependent DFT (TD‐DFT) with the aim to explore their structures, linear optical properties, vertical and adiabatic ionization potentials (IPv and IPa), electron affinities (EAv and EAa), and reorganization energies (λ). The computed bond lengths and bond angles at the B3LYP/6–311+G (d, p) level of theory are in good agreement with experimental crystal structures of the known BTTs. These molecules are planar with zero dihedral angle, making them an ideal backbone for high charge mobility. The UV–visible spectra of BTT isomers are in the range 280–360 nm. All BTT isomers have low hole/electron reorganization energies, which is the main characteristic of good hole/electron transporting materials, and these isomers in turn have potential applications in the field of organic materials.  相似文献   
77.
78.
The spinning of polymeric fibers, the processing of numerous foodstuffs and the peel and tack characteristics of adhesives are all associated with the formation, stability and, ultimately, the longevity of thin fluid `strands'. This tendency to form strands is usually described in terms of the tackiness of the fluid or by heuristic concepts such as `stringiness' (Lakrout et al. J Adhesion 1999). The dynamics of such processes are complicated due to spatially and temporally non-homogeneous growth of extensional stresses, the action of capillary forces and the evaporation of volatile solvents. We describe the development and application of a simple instrument referred to as a microfilament rheometer (MFR) that can be used to readily differentiate between the dynamical response of different pressure-sensitive adhesive fluid formulations. The device relies on a quantitative observation of the rate of extensional thinning or `necking' of a thin viscous or viscoelastic fluid filament in which the solvent is free to evaporate across the free surface. This high-resolution measurement of the radial profile provides a direct indication of the ultimate time to break up of the fluid filament. This critical time is a sensitive function of the rheological properties of the fluid and the mass transfer characteristics of the solvent, and can be conveniently reported in terms of a new dimensionless quantity we refer to as a processability parameter P. We demonstrate the usefulness of this technique by presenting our results in the form of a case study in which we measure the visco-elasto-capillary thinning of slender liquid filaments for a number of different commercial polymer/solvent formulations and relate this to the reported processing performance of the materials. We also compare the MFR observations with the prediction of a simple 1D theory derived from the governing equations that model the capillary thinning of an adhesive filament. Received: 22 December 1999/Accepted: 4 January 2000  相似文献   
79.
80.
JSC‐1a (a simulated lunar dust sample) supported on a silica wafer (SiO2/Si(111)) has been characterized by scanning electron microscopy (SEM), energy dispersive x‐ray (EDX) spectroscopy, and Auger electron spectroscopy (AES). The adsorption kinetics of water has been studied primarily by thermal desorption spectroscopy (TDS) and in addition by collecting isothermal adsorption transients. Blind experiments on the silica support have been performed as well. JSC‐1a consists mostly of aluminosilicate glass and other minerals containing Fe, Na, Ca, and Mg, as characterized in detail in prior studies, for example, at NASA. The particle sizes span the range from a few micrometers up to 100 µm. At small exposures, H2O TDS is characterized by broad (100–450) K structures; at large exposures, distinct TDS peaks emerge, which are assigned to amorphous solid water (ASW) (145 K) and crystalline ice (CI) (165 K). Water dissociates on JSC‐1a at small exposures but not on the bare silica support. Coadsorption TDS data (alkane–water mixtures) indicate that rather porous condensed ice layers form at large exposures, with the mineral particles acting most likely as nucleation sites. At thermal impact energies, the initial adsorption probability amounts to 0.92 ± 0.05. It is evident that the drop‐and‐dry technique, developed in studies about nanoparticles/tubes, can be extended to obtain samples for surface science studies based on powders consisting of particles with rather large diameters. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号