首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1224篇
  免费   67篇
  国内免费   3篇
化学   1083篇
晶体学   15篇
力学   7篇
数学   21篇
物理学   168篇
  2022年   7篇
  2021年   15篇
  2020年   17篇
  2019年   21篇
  2018年   12篇
  2017年   6篇
  2016年   38篇
  2015年   26篇
  2014年   27篇
  2013年   66篇
  2012年   77篇
  2011年   101篇
  2010年   34篇
  2009年   44篇
  2008年   90篇
  2007年   71篇
  2006年   80篇
  2005年   66篇
  2004年   61篇
  2003年   54篇
  2002年   58篇
  2001年   28篇
  2000年   23篇
  1999年   18篇
  1998年   11篇
  1997年   7篇
  1996年   14篇
  1995年   13篇
  1994年   13篇
  1993年   4篇
  1992年   12篇
  1991年   8篇
  1990年   13篇
  1989年   6篇
  1988年   11篇
  1987年   9篇
  1986年   5篇
  1985年   16篇
  1984年   15篇
  1983年   4篇
  1982年   4篇
  1981年   10篇
  1980年   9篇
  1979年   10篇
  1978年   10篇
  1977年   12篇
  1976年   8篇
  1973年   6篇
  1971年   3篇
  1968年   5篇
排序方式: 共有1294条查询结果,搜索用时 31 毫秒
81.
This report describes the photochemical behavior of single‐walled carbon nanotubes (SWNTs) in the presence of propylamine. The SWNTs are characterized by absorption and Raman spectroscopy. The spectral changes due to photoirradiation indicate that reactions occur predominantly with the metallic SWNTs and small‐diameter SWNTs. The detection of amine radicalcation species by ESR spectroscopy reveals photoinduced electron transfer from the amine to the excited SWNTs. After exposure of the photoirradiated SWNTs to air, the characteristic spectra were recovered, except for that of the small‐diameter SWNTs. The results suggest that, after photoreduction of the SWNTs, subsequent selective sidewall functionalization of the small‐diameter SWNTs occurs.  相似文献   
82.
Ferroelasticity has been reported for several types of molecular crystals, which show mechanical‐stress‐induced shape change under twinning and/or spontaneous formation of strain. Aiming to create materials that exhibit both ferroelasticity and light‐emission characteristics, we discovered the first examples of ferroelastic luminescent organometallic crystals. Crystals of arylgold(I)(N‐heterocyclic carbene)(NHC) complexes bend upon exposure to anisotropic mechanical stress. X‐ray diffraction analyses and stress‐strain measurements on these ferroelastic crystals confirmed typical ferroelastic behavior, mechanical twinning, and the spontaneous build‐up of strain. A comparison with single‐crystal structures of related gold‐NHC complexes that do not show ferroelasticity shed light on the structural origins of the ferroelastic behavior.  相似文献   
83.
Herein, the universal design of high‐efficiency stimuli‐responsive luminous materials endowed with mechanochromic luminescence (MCL) and thermally activated delayed fluorescence (TADF) functions is reported. The origin of the unique stimuli‐triggered TADF switching for a series of carbazole–isophthalonitrile‐based donor–acceptor (D–A) luminogens is demonstrated based on systematic photophysical and X‐ray analysis, coupled with theoretical calculations. It was revealed that a tiny alteration of the intramolecular D–A twisting in the excited‐state structures governed by the solid morphologies is responsible for this dynamic TADF switching behavior. This concept is applicable to the fabrication of bicolor emissive organic light‐emitting diodes using a single TADF emitter.  相似文献   
84.
Mechanically induced C−C bond formation was demonstrated by the laser driven shock wave generated in liquid normal alkanes at room temperature. Gas chromatography mass spectrometry analysis revealed the dehydrogenation condensation between two alkane molecules, for seven normal alkanes from pentane to undecane. Major products were identified to be linear and branched alkane molecules with double the number of carbons, and exactly coincided with the molecules predicted by supposing that a C−C bond was formed between two starting molecules. The production of the alkane molecules showed that the C−C bond formation occurred almost evenly at all the carbon positions. The dependence of the production on the laser pulse energy clearly indicated that the process was attributed to the shock wave. The C−C bond formation observed was not a conventional passive chemical reaction but an unprecedented active reaction.  相似文献   
85.
Organogallium and ‐indium compounds are useful reagents in organic synthesis because of their moderate stability, efficient reactivity and high chemoselectivity. Carbogallation and ‐indation of a carbon‐carbon multiple bond achieves the simultaneous formation of carbon‐carbon and carbon‐metal bonds. Heterogallation and ‐indation construct carbon‐heteroatom and carbon‐metal bonds. Therefore, these reaction systems represent a significant synthetic method for organogalliums and ‐indiums. Many chemists have attempted to apply various types of unsaturated compounds such as alkynes, alkenes, and allenes to these reaction systems. This minireview provides an overview of carboindation and ‐gallation as well as heteroindation and ‐gallation.  相似文献   
86.
Perfluorocarbon monomers such as C2F4, C2F6, C4F10, and mixtures thereof with H2, were subjected to plasma polymerization and deposited onto low-density polyethylene (LDPE) substrates. The effect of plasma conditions, surface characteristics, and surface dynamics of plasma polymers on their ability to improve the resistance to water vapor permeation was investigated. An optimum discharge energy density was found for a monomer which provided the greatest reduction water vapor permeability. Although all of the plasma polymers show higher hydrophobicity than polyethylene, the reduction in water vapor permeability is not uniquely related to water contact angle. The surface-dynamic stability of a plasma polymer surface was found to be the key factor in determining the barrier performance of the plasma polymer. The extent of change of surface-configuration after water immersion strongly correlated with the improvement in the water vapor permeation resistance. Plasma polymers with the higher surface-dynamic stability provided the better water barrier coating applied on LDPE films. © 1996 John Wiley & Sons, Inc.  相似文献   
87.
This work deals with the luminous chemical vapour deposition (plasma polymerization) of hydrocarbon polymeric thin films in a magnetic field enhanced discharge of methane. The films were deposited on 4″ <111> single crystal silicon substrates. We investigated the influence of the different glow discharge parameters (e.g. pressure, flow rate, power input, etc.) on the deposition rate of methane and the refractive index of the resulting polymeric films, as well as the distribution of these parameters across the wafer. We used a Shinko Seiki Plasma Polymerization equipment with a bell jar reactor comprising two electrodes connected to a symmetric AC power supply of 15 kHz. Two magnetrons were formed by placing two circular shaped concentric magnetic poles behind each electrode. The substrates were attached on both sides of a rotating wheel held at a floating potential in the middle of the two electrodes. This equipment allowed us to vary a single parameter and keep the other parameters constant over the whole process. We measured the thickness and the refractive index and their distribution over the wafer. The effect of the system pressure, decoupled from the effect of flow rate, is explained by the characteristic nature of luminous gas phase and by the polymerization/deposition mechanism of luminous chemical vapour deposition.  相似文献   
88.
This paper describes a metal–metal bonding technique using metallic Cu nanoparticles prepared in aqueous solution. A colloid solution of metallic Cu particles with a size of 54 ± 15 nm was prepared by reducing Cu2+ (0.01 M (CH3COO)2Cu) with hydrazine (0.6 M) in the presence of stabilizers (5 × 10?4 M citric acid and 5 × 10?3 M cetyltrimethylammonium bromide) in water at room temperature in air. Discs made of metallic materials (Cu, Ni/Cu, or Ag/Ni/Cu) were successfully bonded under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in H2 gas with help of the metallic Cu particle powder. Shear strength required for separating the bonded discs was 27.9 ± 3.9 for Cu discs, 28.1 ± 4.1 for Ni/Cu discs, and 13.8 ± 2.6 MPa for Ag/Ni/Cu discs. Epitaxial crystal growth promotes on the discs with a good matching for the lattice constants between metallic nanoparticles and metallic disc surfaces, which leads to strong bonding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
89.
The ultrasonic reactor with dual frequency was used and the effect of frequency on the fluorescence intensity of terephthalate ion was experimentally investigated in the frequency range from 176 to 635 kHz. The sonochemical reaction fields were visualized by using sonochemical luminescence of luminol solution. Compared with the fluorescence intensity of terephthalate ion for single frequency, the fluorescence intensity for dual frequency increased. The fluorescence intensity ratio of dual frequency to single frequency had maximum value when the frequency of transducer attached at the bottom wall was comparable in magnitude to that at the side wall. In the case of dual frequency, the sonochemical reaction fields became more extensive in the reactor and more intensive around the center of the reactor.  相似文献   
90.
New types of air-stable metal-carbon composites which contain ultrafine metal particles (Fe, Co, Ni, Pd, Pt, Rh, Cu, etc.) uniformly dispersed in a carbon matrix were obtained by pyrolysis of a variety of soluble organometallic polymers, macromolecular-metal complexes, and blends of coal pitch with metal complexes at 400-1400°C in N2. Some of their unique physical properties and functions are noted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号