首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   983篇
  免费   21篇
化学   751篇
晶体学   22篇
力学   16篇
数学   24篇
物理学   191篇
  2023年   3篇
  2022年   9篇
  2021年   7篇
  2020年   9篇
  2019年   12篇
  2018年   8篇
  2017年   6篇
  2016年   11篇
  2015年   10篇
  2014年   17篇
  2013年   59篇
  2012年   53篇
  2011年   46篇
  2010年   29篇
  2009年   25篇
  2008年   51篇
  2007年   52篇
  2006年   46篇
  2005年   66篇
  2004年   51篇
  2003年   36篇
  2002年   66篇
  2001年   23篇
  2000年   29篇
  1999年   26篇
  1998年   6篇
  1997年   8篇
  1996年   10篇
  1995年   5篇
  1994年   9篇
  1993年   14篇
  1992年   11篇
  1991年   21篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   8篇
  1986年   12篇
  1985年   12篇
  1984年   16篇
  1983年   15篇
  1982年   5篇
  1981年   9篇
  1980年   14篇
  1979年   7篇
  1978年   17篇
  1977年   6篇
  1976年   5篇
  1974年   3篇
  1972年   4篇
排序方式: 共有1004条查询结果,搜索用时 31 毫秒
41.
On the basis of the data on the distribution of various neutral solutes between sodium dodecyl sulfate (SDS) micelles and water, the control of separation selectivity in micellar electrokinetic chromatography (MEKC) by modification of the micellar phase with organic additives has been proposed and applied to the separation of simple model compounds. It was found that the distribution constants between the micelles and water (Kd,mc), which were determined by means of MEKC, of the solutes possessing hydrophilic functional groups are much larger than those between heptane and water (Kd,hep), whereas the Kd,mc values of the solutes possessing no hydropholic groups are comparable to their Kd,hep values. This indicates that the former solutes are preferentially solubilized in the Stern layer of the micelles and that the latter are located in the hydrocarbon core. In MEKC separations of aromatic compounds and metal acetylacetonates, considerable changes in separation selectivity were caused by the addition of compounds possessing both hydrophilic functional groups such as alcohols, phenol and ketones to the SDS micellar solution. The variations of the retention factors of the analytes could be explained in terms of saturation of the solubilization sites in the Stern layer with the modifiers, specific interaction of the modifiers with the analytes via hydrogen bonding in the micelles, and expansion of the core volume with the hydrocarbon parts of the modifiers. Such effects of the micellar modification could improve the resolution as well as the selectivity of MEKC separations.  相似文献   
42.
A simple and efficient method for the solid-phase synthesis of benzimidazole libraries is described. Monoalkylation of various o-phenylenediamines on resin-bound bromoacetamide proceeded smoothly to give the monoalkyl resin-bound o-phenylenediamines in high yields. Subsequent cyclization of the diamines with various aldehydes afforded solid-supported benzimidazoles. Cleavage from the resin gave benzimidazoles in good yields. The present method enabled the introduction of the diversity on the benzene ring of imidazoles. Azabenzimidazoles, such as 4-azabenzimidazoles, 5-azabenzimidazoles, and purines, were also synthesized in good yields with high purities by the same procedure.  相似文献   
43.
Irradiation of sodium 1-naphthoxide in MeOH gave selectively 1,4-dihydro-4',8-dihydroxy-1,1'-binaphthyl 2. A similar reaction in PhH afforded the regioisomer 5, along with 6, Structural proof is presented for these hitherto unknown dimers. The reaction is completely quenched in the presence of naphthalene, a good electron scavenger. This new type of photodimerization was proved to be initiated by intermolecular electron-transfer from the excited 1-naphthoxide anion to the ground state one to give the oxidation-reduction dimers.  相似文献   
44.
Equilibria concerning picrates of tetraalkylammonium ions (Me4N+, Et4N+, Pr4N+, Bu4N+, Bu3MeN+) in a dichloromethane−water system have been investigated at 25 C. The 1:1 ion-pair formation constants (K IP,o o) in dichloromethane at infinite dilution were conductometrically determined. The distribution constants (K D o) of the ion pairs and the free cations between the solvents were determined by a batch-extraction method. The K IP,o o value varies in the cation sequence, Bu4N+ ≈ Pr4N+ ≈ Et4N+ < Bu3MeN+ < < Me4N+; this trend is explained by the electrostatic cation−anion interaction taking into account the structures of the ion pairs determined by density functional theory calculations. For the ion pairs of the symmetric R4N+ cations, there is a linear positive relationship between log10 K D o and the number of methylene groups in the cation (N CH 2). The ion pair of asymmetric Bu3MeN+ has a higher distribution constant than that expected from the above log10 K D o versus N CH 2 relationship. These cation dependencies of log10 K D o for the ion pairs are explained theoretically by using the Hildebrand-Scatchard equation. For all the cations, the log10 K D o value of the free cation increases linearly with N CH 2; the variation of log10 K D o is discussed by decomposing the distribution constant into the Born-type electrostatic contribution and the non-Born one, and attributed to the latter that is governed by the differences in the molar volumes of the cations. The cation dependencies of the ion-pair extractability and ion pairing in water are also discussed. An erratum to this article can be found at  相似文献   
45.
46.
47.
Hexarhenium(III) complexes with terminal isothiocyanate ligands, [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)(NCS)(6)] (1) and (L)(4)[Re(6)(mu(3)-Se)(8)(NCS)(6)] (L(+) = PPN(+) (2a), (n-C(4)H(9))(4)N(+) (2b)), have been prepared by three different methods. Complex 1 was prepared by the reaction of [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] with molten KSCN at 200 degrees C, while 2b was obtained by refluxing the chlorobenzene-DMF (2:1 v/v) solution of [Re(6)(mu(3)-Se)(8)(CH(3)CN)(6)](SbF(6))(2) and [(n-C(4)H(9))(4)N]SCN. The [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-) anion was also obtained from a mixture of Cs(2)[Re(6)(mu(3)-Se)(8)Br(4)] and KSCN in C(2)H(5)OH by a mechanochemical activation at room temperature for 20 h and isolated as 2a. The X-ray structures of 1 and 2a.4DMF have been determined (1, C(70)H(144)N(10)S(14)Re(6), monoclinic, space group P2(1)/n (No. 14), a = 14.464(7) A, b = 22.059(6) A, c = 16.642(8) A, beta = 113.62(3) degrees, V = 4864(3) A(3), Z = 2; 2a.4DMF, C(162)H(144)N(14)O(4)P(8)S(6)Se(8)Re(6), triclinic, space group P1 (No. 2), a = 15.263(2) A, b = 16.429(2) A, c = 17.111(3) A, alpha = 84.07(1) degrees, beta = 84.95(1) degrees, gamma = 74.21(1) degrees, V = 4098.3(8) A(3), Z = 1). All the NCS(-) ligands in both complexes are coordinated to the metal center via nitrogen site with the Re-N distances in the range of 2.07-2.13 A. The redox potentials of the reversible Re(III)(6)/Re(III)(5)Re(IV) process in acetonitrile are +0.84 and +0.70 V vs. Ag/AgCl for [Re(6)(mu(3)-S)(8)(NCS)(6)](4)(-) and [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-), respectively, which are the most positive among the known hexarhenium complexes with six terminal anionic ligands. The complexes show strong red luminescence with the emission maxima (lambda(max)/nm), lifetimes (tau(em)/micros), and quantum yields (phi(em)) being 745 and 715, 10.4 and 11.8, and 0.091 and 0.15 for 1 and 2b, respectively, in acetonitrile. The data reasonably well fit in the energy-gap plots of other hexarhenium(III) complexes. The temperature dependence of the emission spectra and tau(em) of 1 and [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] are also reported.  相似文献   
48.
An efficient synthesis of cyclodextrins (CDs) by using the intramolecular glycosylation is demonstrated. alpha-CD, an alpha(1-->4)linked hexaglucoside, was prepared via a block condensation of three maltose units. A modified key maltose intermediate as a precursor to both glycosyl donor and acceptor components was prepared in 6 steps starting from maltose. All the glycosylation for chain elongation and cyclization of saccharides was carried out after tethering the donor to the acceptor by the phthaloyl bridge to give the desired saccharides in good yields with complete alpha-selectivity. delta-CD composed of 9 glucose units was synthesized by the same manner from three maltotriose units.  相似文献   
49.
Takeda Y  Yasui A  Morita M  Katsuta S 《Talanta》2002,56(3):505-513
To investigate quantitatively the anion effect on the extraction-ability and -selectivity of benzo-18-crown-6 (B18C6) for alkali metal ions, the constants for overall extraction into various diluents having low dielectric constants (K(ex)) and aqueous ion-pair formation (K(MLA)) of B18C6-sodium and potassium perchlorate 1:1:1 complexes (MLA) were determined at 25 degrees C. The K(ex) value was analyzed by the four fundamental equilibrium constants. The K(MLA) values were determined by applying our established method to this perchlorate extraction system. The K(M(B18C6)A) value of the perchlorate is much larger for K(+) than for Na(+), and is much smaller than that of the picrate. The K(M(B18C6)A) value makes a minor contribution to the magnitude of K(ex) for the perchlorate system, but a major contribution to that for the picrate one. The distribution behavior of the B18C6 1:1:1 complexes with the alkali metal perchlorates follows the regular solution theory. For the diluent with a high dipole moment, however, the 1:1:1 complexes somewhat undergo the dipole-dipole interaction. B18C6 always shows very high extraction selectivity for KClO(4) over NaClO(4), which is determined mostly by the much greater log/(log K(MLA)) value for K(+) than for Na(+). The extraction-ability and -selectivity of B18C6 for Na(+) and K(+) ions with a perchlorate ion were compared with those with a picrate ion in terms of the fundamental equilibrium constants. The K(+) extraction-selectivity of B18C6 over Na(+) for the perchlorate system is superior to that for the picrate one, which is caused largely by the greater log/(log K(K(B18C6)A))-log/(log K(Na(B18C6)A)) value for the perchlorate than for the picrate. The perchlorate system is recommended for extraction separation of K(+) from Na(+).  相似文献   
50.
The crystallization of calcium carbonate was carried out by mixing CaCl(2) and Na(2)CO(3) solutions. The morphology of precursor formed prior to the nucleation of the polymorphous crystals (calcite and vaterite) varies depending on the feed concentration. The faster nucleation rate of polymorphous crystals in 0.2 mol/L than in 0.05 mol/L solution results in the prompt disappearance of the precursor at 0.2 mol/L. In 0.05 mol/L solutions the lifetime of the precursor is relatively long. The crystallization fraction of vaterite increases with the feed concentration and decreases with the addition rate of Na(2)CO(2) solution. Vaterite takes on the various morphologies of the aggregates of the primary flocculation body (spherulite) depending on the crystallization conditions. Vaterite transforms to calcite by a direct solution-mediated mechanism. During crystallization the concentration attains a stationary value, which increases with the feed concentration and decreases with the addition rate of Na(2)CO(2) solution. This may be due to the crystal size decrease expected from the Gibbs-Kelvin equation. Magnesium ion suppresses the transformation of vaterite by inhibiting the growth of the calcite. Magnesium ion is selectively included in calcite and causes the increase of the attained concentration and the remarkable change in the morphology of calcite especially in 0.05 mol/L solution. Copyright 2001 Academic Press.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号